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Ultrasonic Imaging Using a Computed Point
Spread Function

Ramsharan Rangarajan, C. V. Krishnamurthy, and Krishnan Balasubramaniam

Abstract—An explicit point spread function (PSF) eval-
uator in the frequency domain is described for an ultrasonic
transducer operating in the pulse-echo mode. The PSF eval-
uator employs the patch element model for transducer field
determination and scattered field assessment from a small
but finite “point” reflector. The PSF for a planar trans-
ducer in a medium has been evaluated in the near and the
far field. The computed PSFs were used to deconvolve and
restore surface images, obtained experimentally, of a sin-
gle hole and a five-hole cluster in an Al calibration block.
A calibration plot is arrived at for estimating, without the
need for deconvolution, the actual diameters of circular re-
flectors from apparent diameters obtained experimentally
for a single-medium imaging configuration. The PSF, when
the transducer and the point reflector are in two media
separated by a planar interface, was evaluated in the near
and far field. The computed PSFs were used to deconvolve
and restore subsurface images, obtained experimentally, of
flat bottom holes (FBHs) in an Al calibration block. We
show that the PSF, in the presence of a planar interface,
can be obtained from a single-medium PSF model using
an effective single-medium path length concept. The PSFs
and modulation transfer functions (MTFs) are evaluated for
spherical focused and annular transducers and compared
with those for the planar transducer. We identify imaging
distances to get better-resolved images when using planar,
spherical focused, and annular transducers.

I. Introduction

Ultrasonic imaging is an important aspect of nonde-
structive evaluation of industrial components capa-

ble of providing qualitative as well as quantitative infor-
mation. Industrial imaging tools are being constantly im-
proved at both the hardware and the software levels to
achieve better quality images and higher resolution [1].
While it is known that image degradation is due to the ra-
diation and reception characteristics of the sensors, much
of the effort has been directed toward developing “blind”
deconvolution techniques without involving explicit sensor
characteristics [2], [3]. These techniques are general but
applicable only in the far field, and do not exploit sen-
sor characteristics fully. Efforts to obtain higher resolution
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images using newer transducer designs or newer configura-
tions also need to exploit sensor characteristics explicitly
to succeed.

Ultrasonic transducers are commonly used in pulse-echo
mode to generate C-scans of components, and the resolu-
tion criterion in the far field is distinct from Rayleigh’s cri-
terion applicable for the receive-only mode. Another com-
mon feature in the generation of C-scan images is the pres-
ence of an interface between the medium being inspected
and the fluid in which the medium is immersed. The influ-
ence on the resolution and image quality due to the inter-
face position with respect to the transducer on the one side
and the flaw(s) on the other side needs to be understood.

C-scans carry volume information since they record
data from every depth in the specimen. To image the plane
of interest, C-scans have to be gated in time so that in-
formation specific to only that plane is recorded. Broad-
band transducers are preferred as they offer reasonably
short duration pulses leading to good axial resolution. The
time-gated signal has different frequency components in
the Fourier domain, determined by the bandwidth of the
imaging system. The ultrasonic image in the frequency do-
main is obtained by monitoring a specific frequency com-
ponent (usually the center frequency of the transducer) of
this time-gated signal. However, this image is never an ex-
act representation of the object since the image creation
and reconstruction are both influenced by the imaging dis-
tance, the scan step, and the transducer beam divergence
(governed by its shape, size, and frequency).

The two-dimensional (2-D) point spread function (PSF)
characterizes the image degradation caused by the trans-
ducer and helps determine its lateral resolution capabilities
[4]. The advantage of deconvolving with a pulse-echo mode
PSF taking into account certain transducer characteristics
as well as the interface effects has been demonstrated [5].
The PSF of an imaging system in the pulse-echo mode is
the image of a point reflector as insonified and recorded
by it. Since any reflecting plane surface being imaged can
be thought of as a collection of point reflectors, the image
g(x, y) is formed by a convolution of the object f(x, y) and
the system PSF h(x, y), i.e.,

g(x, y) = h(x, y) ⊗ f(x, y), (1)

where ⊗ denotes the convolution operator.
The Fourier transform of the object F (u, v) can be re-

covered by a direct division in the spatial frequency do-
main (u, v) as
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F (u, v) =
G(u, v)
H(u, v)

, (2)

where G(u, v) and H(u, v) are the Fourier transforms of g
and h. The object f can then be obtained by an inverse
Fourier transform of F . However, there is always some
degradation of the image g(x, y) due to noise, n(x, y) in
the recording system. Thus,

g(x, y) = h(x, y) ⊗ f(x, y) + n(x, y). (3)

The restoration procedure now has to be written as

F (u, v) =
G(u, v)
H(u, v)

− N(u, v)
H(u, v)

, (4)

with N(u, v) being the Fourier transform of n(x, y). In
these equations, it is tacitly assumed that there is no
degradation of the PSF due to noise. However, an experi-
mentally measured PSF (i.e., a C-scan image of a “point”
reflector, usually a small steel ball, with the same param-
eters used to image the object) would contain noise and
would therefore pose considerable difficulties while restor-
ing the object f(x, y). On the other hand, the use of a PSF
computed for the transducer would do away with this issue.
The computed PSF can then be further used to study the
influence of the various parameters involved in imaging, so
that they can be optimized for specific configurations.

This paper is organized as follows: Section II presents
the PSF computation in a single medium. It describes how
experimental data on a single circular hole as well as on
a five-hole cluster in an aluminum calibration block are
used to obtain deconvolution-based sizing with the use of
a computed PSF. It then details how a calibration curve
can be generated for a given transducer which can be used
to obtain lateral sizes of unknown objects directly from
experimental profiles without the need to deconvolve. Sec-
tion III presents the computation of the PSF when the
transducer is in one medium and the point reflector is in
another, with a planar interface separating the two me-
dia. It describes how the computed PSF is used with ex-
perimental data to deconvolve and determine the lateral
sizes of flat-bottom holes (FBHs) in an aluminum cali-
bration block. It also shows that the effective path length
concept, used when focused transducers are employed to
image subsurface objects, can be applied to evaluate the
two-media PSF, thereby simplifying the computation con-
siderably. Section IV presents a discussion on how the PSF
and the resulting modulation transfer function (MTF) of
planar transducers, spherical focused transducers, and an-
nular transducers can be used to optimize imaging param-
eters. The paper concludes with a flowchart outlining a
procedure for transducer characterization and PSF-based
deconvolution. The advantages of having the capability to
compute the PSF for any imaging configuration and of the
role of the computed PSF in deconvolution-based sizing are
highlighted.

Fig. 1. Schematic of the patch element model (PEM) for transducer
field evaluation.

II. Calculating the Pulse-Echo PSF in a Single

Medium

The PSF can be computed by using a transducer beam
model in conjunction with a model that accounts for the
back-scattering from a “point” reflector. Several beam
models such as the generalized Rayleigh-Sommerfield
model [6], the Gaussian beam model [7], [8], and the patch
element model (PEM) [9] have been proposed to calcu-
late the incident fields (of transducers) in the frequency
domain. Krishnamurthy et al. [10] have used the PEM to
determine the transducer field characteristics. The PEM
was also used to quantify the FBH response by treating
the reflector as made up of patches [10]. The PSF eval-
uator described below follows a similar approach in that
the PEM is used for computing both the transducer fields
and the response of a small finite-sized reflector that rep-
resents a “point” reflector. The geometry for the model
is shown in Fig. 1. The symbols used (other than those
already shown in Fig. 1) are a - transducer radius, ω -
frequency, λ - wavelength, k - wave number, ∆A - patch
area, ρ - density of the medium, c - velocity of sound in
the medium, and i =

√
−1.

The transducer is tiled using M patches, a number large
enough so that the reflecting point (Rref) lies in the far field
of each patch Pj of the transducer (and not necessarily in
the far field of the transducer), i.e.,

Rj ≥ ∆w2

4λ
. (5)

A constant F can be defined so that the above condition
can be rewritten to compute the dimension ∆w of the
patches as

∆w ≤
√

4λRj

F
. (6)

F denotes a measure of the distance of the patch Pj to
the reflecting point (Rref) relative to the near- to far-field
transition distance for the patches. A similar relationship
is used to determine the dimension ∆h.

The point reflector is modeled as a single patch with
dimensions ∆wr × ∆hr.

The incident pressure field on the reflector patch Rref
due to the patch Pj , with the normal component of the
particle velocity as v0, can be computed as
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P inc
j =

iρcv0∆A

λRj
e−ikRj Dj , (7)

where Dj is the directivity of the patch Pj , given by

Dj = sinc
(

k(xj − xr)∆w

2Rj

)
sinc

(
k(yj − yr)∆h

2Rj

)
.
(8)

For simplicity, the patches have all been chosen to be of
the same dimension.

The product of the incident pressure field pinc
j and the

directivity function of the reflector patch gives the pressure
field received by the patch Rref. The total pressure field at
the reflector patch is computed as

prec
ref =

M∑
j=1

pinc
j Dr

j , (9)

where Dr
j is the directivity of the reflector patch, given by

Dr
j = sinc

(
k(xj − xr)∆wr

2Rj

)
sinc

(
k(yj − yr)∆hr

2Rj

)
.

(10)

The reflector patch is now considered to be a secondary
source, and the transducer patches are now thought of
as receiver patches. By following the procedure detailed
above, the field received by the transducer (prec) is com-
puted through integration (summation) of the fields re-
ceived by each transducer patch:

prec(ω) =
1
S

∫
S

prec
refA(ω)

e−ikRj

Rj
dS, (11)

where A(ω) is the angle dependent “scattering amplitude”
of the reflector represented by

A(ω) =
∆wr∆hr

λ
Dr

j . (12)

Once again, the evaluation of the integral is carried out
using the patch model.

The term prec, when evaluated for different relative po-
sitions of the transducer and the reflector patch, yields the
PSF. For example, the point reflector can be kept fixed on
the Z-axis and the transducer moved in the X-Y plane.
Then,

PSF = prec(x, y). (13)

Henceforth, all experimental images referred to shall be
understood to have been scanned with a scan step of
0.1 mm in both X and Y directions. This choice will be
justified in a later section where scan step considerations
are discussed.

A. Imaging with a Planar Transducer

A commercial immersion-type planar transducer,
marked 0.375-inch diameter and 5-MHz center frequency,

Fig. 2. (a) Computed on-axis response for a circular transducer; (b)
comparison of PSFs at N and N/3.

was chosen for imaging. Experiments in conjunction with
PEM calculation using small reflectors of known size (com-
parison of pressure profiles along and across the axis of
the transducer) led to the determination of the center fre-
quency as 4.9 MHz and the effective diameter as 0.385 inch.
The PEM calculations were carried out with the trans-
ducer tiled using 3228 square patches with F = 1300 for
R = N/3, where N = a2/λ is the near- to far-field transi-
tion distance for the transducer. Such a value of F ensured
that the reflector patch was in the far field of each trans-
ducer patch.

Consider a point reflector and a transducer placed such
that the reflector lies fixed at some point along the axis of
the transducer. Henceforth, we shall refer to the “on-axis”
response of the reflector as the pressure field measured
when the transducer is translated along its axis. Similarly,
by “off-axis” response, we refer to the pressure field mea-
sured by translating the transducer perpendicular to its
axis.

The normalized on-axis response of a point reflector
for a planar transducer computed using PEM is shown
in Fig. 2(a). Since the on-axis distance has been scaled by
the transition distance N , the curve shown is independent
of the choice of a and λ. The two imaging distances of in-
terest for the planar transducer are the transition distance
N and the near field distance N/3. The PSFs at these two
distances are shown in Fig. 2(b). Despite the high sidelobe
levels, imaging at N/3 is of interest because of the narrower
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beam width compared to the beam width at N . Imaging
at distances closer than N/3 is not considered because of
the lack of a distinct main beam at such close distances.

Remark: The off-axis response at the same characteris-
tic distance of transducers, when scaled by the respective
transducer radii, becomes independent of the choice of the
transducer parameters, i.e.,

PSF
(

x

a1
,

y

a1
, z = q · N1

)
Transducer 1

= PSF
(

x

a2
,

y

a2
, z = q · N2

)
Transducer 2

. (14)

Hence, the PSFs shown in Fig. 2(b) are universal and in-
dicate that N/3 is always a better imaging distance than
N for planar transducers.

B. Restoring Images in a Single Medium

The 2-D Wiener deconvolution procedure in MATLAB
(The MathWorks, Inc., Natick, MA) was used to restore
images as

F (u, v) =
G(u, v) × H(u, v)
K + |H(u, v)|2 , (15)

where H(u, v) is the complex conjugate of H(u, v), and K,
usually a fraction of |H(u, v)2|, is introduced to prevent
spurious enhancement caused by zeroes of |H(u, v)2|.

1. Imaging at Distance N : Fig. 3(a) and (b) show the
experimental and restored images of a 1.5-mm-diameter
hole in an Al 7075-T6 calibration block. The experimental
image shows the dimension of the hole to be much larger
than the actual size due to the blurring effect of the PSF.
Diametrical profiles of the experimental and restored im-
ages are shown in Fig. 4(a) and (b). Similarly, Fig. 5(a) and
(b) show the experimental and restored images of a sec-
tion of the calibration block having five 1.5-mm-diameter
holes arranged along a 10◦ incline. The spacing between
consecutive holes is 4 mm, 4 mm, 2.5 mm, and 2.5 mm.
The closest separation between two points that need to be
resolved is hence 1 mm. It can be seen from Fig. 5(a) that
the closer holes are nearly indistinguishable. Fig. 6(a) and
(b) show the profiles across the holes from the experimen-
tal and restored images. The restored profile does show
five holes, though not well resolved.

2. Imaging at Distance N/3: The single hole and the
five-hole cluster imaged at N were also imaged at N/3.
Fig. 7(a) and (b) shows the experimental and restored
images of the single hole imaged at N/3. The high side-
lobe level in the PSF manifests as a ring-like structure in
the experimental image. The diametrical profiles for the
two images are shown in Fig. 8(a) and (b), respectively.
The dimension of the single hole is reproduced almost ex-
actly. The experimental and restored images of the five-
hole cluster are shown in Fig. 9(a) and (b). The profile

Fig. 3. (a) Experimental image of a 1.5-mm-diameter hole in an Al
calibration block using a 0.375-inch, 5-MHz transducer at N ; (b) im-
age restored using the computed PSF.

across the holes is shown in Fig. 10(a) and (b). From the
profile, the spacing between consecutive holes was found
to be 4 mm, 4.3 mm, 2.3 mm, and 2.4 mm, which com-
pare well with the actual values. Three hundred iterations
of the Lucy-Richardson deconvolution algorithm in MAT-
LAB were found to resolve the five-hole cluster and size
the holes with good accuracy.

C. Calibration Curve for Circular Reflectors

Recall the remark made in Section II-A that (at a given
characteristic on-axis distance) the PSF beam width scales
as the transducer radius a. Hence, C-scans can be used di-
rectly to get the size of flaws if they are of the order of
a. However, this would not be the case for smaller flaws,
where the modifying influence of the PSF is much greater,
causing the experiment to only give an apparent size. We
demonstrate below that we can make use of this difference
in the influence of the PSF to calculate the actual sizes of
small flaws. We use the 0.375-inch circular transducer to
image circular reflectors in water with the imaging distance
as N . For this purpose, the PSF for the transducer is com-
puted at distance N and convolved with circular reflectors
having diameters ranging from one-tenth to 2 times the
transducer diameter to calculate the profile of the reflec-
tors that we would get from an experiment. From these
profiles, we observed that the true sizes of reflectors larger
than the transducer were indicated at 6.85 dB. This infor-
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Fig. 4. (a) Diametrical profile across experimental image and
(b) across the restored image for the single-hole case. The profile
after restoration provides a much better measure of the size of the
hole (marked by vertical lines) compared to the profile from the ex-
periment.

mation is used to draw a calibration curve which maps the
apparent width of the reflectors at 6.85 dB (measured from
an experiment) to the actual diameters of the reflectors.
To keep the curve universal (i.e., imaging at N using any
planar transducer), the apparent and actual widths are
scaled by the transducer diameter. Fig. 11 shows a plot
of the scaled apparent sizes of reflectors at 6.85 dB versus
their corresponding scaled actual sizes. To demonstrate
the use of this curve, the 6.85 dB width of the experimen-
tal profile of an 8/64-inch FBH in the calibration block was
measured to be 0.172 inch. Using the calibration curve, the
size was read as 0.128 inch, which compares very well with
the actual size. We suggest that the effective diameter (as
opposed to the marked diameter) of the transducer found
after calibration be used to draw this curve. The physical
(/marked) diameter does provide a reasonable approxima-
tion for reflector sizing.

III. PSF Calculations in the Presence of a

Planar Interface

Restoration of subsurface images necessitates the calcu-
lation of PSFs in the presence of an interface. Fig. 12 shows
the relevant schematic for this calculation. The procedure
to compute the PSF is outlined here.

The transducer is tiled with a number of patches fol-
lowing the criterion described in Section II. The distance

Fig. 5. (a) Experimental image of Al block having 5 holes; (b) re-
stored image. Notice the poor resolution of the holes with close spac-
ing. This occurs due to the high beam width at N .

to be used to decide M should now be the depth of the
interface instead of the distance to the reflector patch.

Each patch is treated as an effective point source and
the high frequency approach employing a ray picture is
utilized for determining the field across the planar inter-
face [11].

A ray is traced from the transducer patch Pj to the
reflector patch Rref using Snell’s law.

Defining n = c1/cp2, Dj as the directivity of the trans-
mitting patch, T12(θ) as the transmission coefficient from
medium 1 to medium 2, s1,j as the length of the ray from
the patch Pj to the interface, and s2,r as the length of the
ray from the interface to the patch Rref, the component of
the incident displacement field on Rref due to patch Pj is
computed as

uinc
j (Rr) =

−iρ1v0

ρ2cp2

· T12(θinc) exp(ik1s1,j + ik2s2,r) · Dj√
s1,j +

s2,r

n
·
√

s1,j +
cos2(θinc)

n cos2(θrefr)
s2,r

.
(16)

Analogous to the computation in a single medium, the
incident displacement field at the patch Rref is then com-
puted as
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Fig. 6. (a) Profile (along the line passing through the center of the
holes) across the holes in the experimental image and (b) across the
restored image of the five-hole section.

urec
ref =

M∑
j=1

uinc
j Dr

j , (17)

with Dr
j defining the directivity of the reflector located in

the second medium.
Once again, Rref is considered to be a secondary source.

Rays are traced from the second medium back into the
first, received by each patch of the transducer, and inte-
grated (summed) over the transducer area to obtain the
received field:

prec(ω) =
iωρ2cp2

S

·
∫
S

uref
recA(ω)T21(θinc) exp(ik1s1,j + ik2s2,r)

√
s2,r + ns1,j ·

√
s2,r +

n cos2(θrefr)
cos2(θinc)

s1,j

dS,
(18)

where A(ω) is, as before, the “scattering amplitude” of the
reflector located in the second medium and is represented
by the “sin c” functions. The evaluation of (17) is carried
out using the patch model.

A. Experimental Verification of PSF Calculations for a
Water-Aluminum Interface

Time-gated flaw signals from experiments using an Al
7075-T6 calibration block having 3/64-inch-diameter FBHs

Fig. 7. (a) Experimental image and (b) restored image of the single
hole when the imaging takes place at a near-field distance N/3. The
ring-like structure in the experimental image occurs due to the high
sidelobe level at this imaging distance.

at different depths were used to verify the PSF calculations
in the presence of an interface. Fig. 13(a) shows the exper-
imental and computed on-axis response from the FBH at
a depth of 0.3 inch from the interface and a varying water
path. From the experiments and the PEM calculations, the
center frequency of the transducer was found as 4.9 MHz
and the effective diameter as 0.385 inch. Fig. 13(b) and (c)
show the experimental and computed diametrical profiles
of the FBH for two different water patches corresponding
to a near-field distance and the transition distance (the
last on-axis maxima in the pressure field). Since the 3/64-
inch FBH could not be considered as a single patch, it was
modeled as a circular reflector discretized into Q patches,
Rref,q. Alternatively, the computed profile could also have
been calculated by convolving the PSF with a function
representing the FBH.

B. Restoring Subsurface Images

With the PSF calculation verified (by good agreement)
with experiments and the effective diameter of the trans-
ducer found as 0.385 inch, the computed PSF was used to
restore images of 5/64-inch- and 8/64-inch-diameter FBHs at
a depth of 0.4 inch in the Al calibration block. The water
path was 33.7 mm so as to have the FBH at the location
of the last on-axis maximum in the pressure response. The
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Fig. 8. (a) Diametrical profile across the experimental image and
(b) profile across the restored image for the single hole. The dotted
line indicates the actual size of the hole. The restored image gives
the nearly exact size of the hole.

experimental and restored images (using the Wiener de-
convolution) of the 5/64-inch FBH are shown in Fig. 14(a)
and (b). Their respective diametrical profiles are shown
in Fig. 14(c). The exercise was repeated for the 8/64-inch
FBH. The corresponding images and profiles are given in
Fig. 15(a)–(c). The restoration is seen to be good for both
cases.

C. Replacing Aluminum with an Effective Water Path

It is a common practice to find the focusing depth of
spherical focus transducers in the presence of a second
medium (say, Al) using an effective path length concept
[5] as

Depth of focal point in Al =

(focal length − water path) · cwater

cp,Al
. (19)

The PSF calculator was used to evaluate such a rule of
thumb in the context of imaging. The locations of the max-
ima at N and at N/3 (analogous to the focal length for a
spherical focus transducer) in water alone and in the pres-
ence of an Al interface for a 0.375-inch-diameter, 10-MHz
planar transducer are compared in Table I. Fig. 16(a) and
(b) compare the PSFs using single-medium (with effective
path length) and two-medium calculations for distances

Fig. 9. (a) Experimental image of the five-hole section and (b) the
restored image. Hole sizing should be done using the diametrical
profiles.

Fig. 10. (a) Profile across the experimental image and (b) across the
restored image. The locations of the holes are indicated using dotted
lines. Notice that all the holes are well resolved and that the holes
farther apart are better resolved than others.
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TABLE I
Comparison Between 2-Medium and Effective Path Length Calculations.

Water
(single

Symbol medium) 15-mm water path + Al interface

Depth of maximum at N/3 51.47 mm 23.15 mm

Depth of maximum at N/3 N.A. 15 + (51.47 − 15) ×
(

1.47
6.32

)
= 23.48 mm

(Thumb rule)

Depth of maximum at N 154.40 mm 47.30 mm
(PEM model)

Depth of maximum at N N.A. 15 + (154.4 − 15) ×
(

1.47
6.32

)
= 47.43 mm

(Thumb rule)

Fig. 11. Calibration curve for imaging with planar transducers at
N . The curve gives the actual sizes of circular reflectors from their
apparent sizes indicated by the 6.85 dB level. The apparent width of
a point reflector (6.85 dB width of the PSF) is also marked on the
ordinate axis.

Fig. 12. Schematic for field evaluation across a planar interface for
an elemental patch of the transducer.

N and N/3, respectively. The close correspondence even
in the far sidelobe regions indicates that the thumb rule
is indeed a good approximation for imaging and sizing in
both the near and the far field.

IV. Influence of Imaging Parameters

The transducer shape and diameter, the imaging dis-
tance, and the scan step are the imaging parameters con-
sidered for discussion. We have demonstrated that N/3
was a superior imaging distance for the planar transducer
compared to N . We proceed to study the PSF characteris-
tics of the spherical focus and annular transducers, widely
used for imaging, to find favorable imaging distances.

A. Spherical Focus Transducers

It is well known that spherical focus transducers focus
ahead of their geometric focus [8]. This can be seen in
Fig. 17(a), where the true focus (henceforth referred to
as TF) of a 0.375-inch-diameter, 5-MHz center frequency
spherical focus transducer was found to be 0.6 R0, signifi-
cantly ahead of the geometric focus (GF) R0 = 77.2 mm.

Remark: With a fixed geometric focal length R0, the family
of spherical focus transducers with the same value of N =
a2/λ would have the same true focal length.

Fig. 17(b) compares the PSF at the TF and the GF.
The PSF at the TF is seen to be narrower than at the GF,
and this was found (and can be shown) to happen for any
spherical focus transducer. This clearly suggests that the
TF is always a better imaging distance than the GF. We
observed that for a fixed focal length, a larger aperture
and/or a smaller wavelength not only shifted closer to the
GF, it also improved the PSF (by narrowing the beam
width) at the corresponding locations of the TF. A similar
shift can be achieved, instead, by reducing the focal length
for fixed a and λ.

B. Annular Transducers

Annular transducers are considered attractive for imag-
ing purposes due to the non-diffracting beams that they
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Fig. 13. (a) On-axis response from a 3/64-inch FBH at 0.3-inch depth
in Al and a variable water path. The computed profile used an ef-
fective diameter of 0.385 inch, different from the 0.375 inch marked
on the transducer. Experimental and computed diametrical profiles
of the FBH at (b) a near-field distance (20.3-mm water path and
0.3-inch Al path), and (c) the transition distance from near to far
field (46-mm water path and 0.3-inch Al path). The computations
agree well with the experiment in all three cases.

Fig. 14. (a) Experimental image, (b) restored image, and (c) diamet-
rical profile of a 5/64-inch FBH at a 0.4-inch depth in Al. The water
path was 33.7 mm, corresponding to the transduction distance for
the transducer. The exact size of the FBH is shown in dotted lines.

can generate [12], [13]. They are specified by their inner
and outer diameters and the center frequency. We exploit
the fact that if the radii for the annulus are chosen using
the idea of Fresnel zones [14], these transducers can “fo-
cus” the energy at a desired point along the axis. Thus,
for a fixed inner radius ain, the outer radius aout is chosen
so that the difference in path length from these two radii
to the focal point at F0 is λ/2, i.e.,

√
a2
out − R2

0 −
√

a2
in − R2

0 = λ/2. (20)

Such a choice ensures that all waves emanating from the
annulus interfere constructively (though not completely
constructive, as in the case of the spherical focus trans-
ducer).

Ramsharan Rangarajan
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Fig. 15. (a) Experimental image, (b) restored image, and (c) diamet-
rical profile of an 8/64-inch FBH. The depth in Al and water path is
the same as the 5/64-inch FBH case. The exact size of the FBH is
indicated by dashed vertical lines.

Remark: For a particular choice of the focal length as
a2
in/λ(= Nin), the PSF (at any characteristic distance)

scaled by ain was a profile independent of ain and λ.

For a fixed focal length, the PSF at the focal length
can be improved by increasing the inner diameter (and
calculating the appropriate outer diameter) and/or by in-
creasing the frequency. Interestingly, we found that for the
annular transducer, the penultimate maximum in the on-
axis response occurs very close to R0/3, and the PSF at
this distance had a significantly narrower beam width than
at R0, which bears a striking similarity to the results for
the planar transducer. The decrease in beam width is ac-
companied by an increase in the sidelobe. Fig. 18(a) and
(b) compares the PSFs for the planar and annular trans-
ducers. Clearly, the PSF at R for the annular transducer

Fig. 16. Comparison between the exact two-medium PSF calculation
(solid line) and the effective single-medium PSF calculation (dashed
line). (a) PSFs at N/3, and (b) PSFs at N . The dB scale was adopted
to enable comparison of the sidelobes far from the axis of the trans-
ducer.

is narrower than the PSF at N for the planar transducer.
The same is the case at R0/3 and N/3, respectively, but
the sidelobe level for the annular transducer is much less
than for the planar transducer at their respective imaging
distances. Hence, the annular transducer would be better
suited for imaging than the planar transducer.

C. Image Resolution Capabilities

The resolution that a transducer achieves can be de-
duced by evaluating its MTF. The MTF gives the relative
amplitude of the different spatial frequency components of
the PSF and can hence be directly associated with resolv-
ing capability [4] of the system. For a spatial frequency ap-
proaching 0 (two points separated by very large distances),
all imaging configurations provide a relative contrast of ∼1
(100%) since the two objects would be completely resolved.
As the spatial frequency increases, i.e., as objects get closer
to each other, the resolving capability of the system de-
creases. Fig. 19 shows a comparison of MTF curves for
the planar transducers (parameters: a and λ) and annular
transducers (parameters a, λ, and R0 = a2/λ) at N . The
resolving capability of a transducer can be nominally taken
to be the spatial frequency for which the MTF indicates
50% contrast. In Fig. 6(a), the 4-mm-spaced holes (2 holes
separated by a 2.5-mm gap) are well resolved while the
2.5-mm-spaced holes (three holes separated by 1-mm gaps)
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Fig. 17. Characteristics of a spherical focus transducer. (a) On-axis
response of a point reflector showing the true and geometric focal
lengths; (b) PSFs at these two distances.

Fig. 18. Comparison of the PSFs of annular and planar transducers
at (a) N and at (b) N/3.

Fig. 19. Comparison of MTF curves for the planar and annular trans-
ducers at N . The inner radius of the planar transducer is equal to
the radius of the planar transducer.

Fig. 20. Comparison of MTF curves at the geometric and true focal
distances of a spherical focus transducer of radius 0.375 inch, center
frequency 5 MHz, and focal length 77 mm.

are unresolved. This can be understood from the MTF re-
sponse for the planar transducer. The 4-mm-spaced holes
can be thought of as corresponding to approximately 0.3
lines/mm, leading to a 20% contrast. The 2.5-mm-spaced
holes can be thought of as corresponding to approximately
0.5 lines/mm, leading to vanishing contrast.

It can be seen how the annular transducer provides a
much higher contrast for closely spaced objects. Fig. 20
compares the MTF curves at the TF and the GF of the
spherical focus transducer used in Section VIII-A, quanti-
tatively proving that the TF is a better imaging distance.
The MTF for the planar and annular transducers at N/3
are not shown since the spatial frequency components of
the sidelobes interfere with those of the main lobe (the
portion of the beam which is of interest for imaging). How-
ever, in practice, the advantages of the planar and annular
transducers at N/3 should be exploited.

Although the contrast decreases at higher spatial fre-
quencies, systems based on 12-bit or 14-bit data acqui-
sition (DAQ) cards can discriminate lower contrast and
provide higher resolutions.
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D. Scan Step Considerations

The PSF and the corresponding MTF would represent
the transducer characteristics when evaluated with a suf-
ficiently small scan step, say, δ0. This scan step is arrived
at by ensuring that no further detail is revealed in the
PSF/MTF by decreasing the scan step further than δ0. A
value of 0.1 mm was found to be reasonable to generate
the PSFs for the systems chosen in the present work. From
the MTF, it is possible to deduce the scan step required to
generate C-scans as follows: Let n be the number of units
resolved in an interval of 10 mm at a specified contrast in
the MTF. According to the sampling theorem, a minimum
of 2 points would be required to sample a unit. Combining
these two features, the upper bound on the scan step δ
would be given by

δ =
10

(2 × n)
mm. (21)

Since it is known that the number of points m necessary
to sample a unit would have to be larger than 2, a finer
scan step would result in practice. In general, then, the
scan step would be given by

δ =
10

(m × n)
mm. (22)

However, the finest scan step cannot be lower than δ0, for
the transducer characteristics limits the resolving capabil-
ities fundamentally. In other words, given n, increasing m
indefinitely does not help resolve the object.

In principle, restoration through deconvolution helps re-
solve the object even though the object is poorly resolved
in the raw image. For instance, in the profile of the raw
image shown in Fig. 6(a), the three closely spaced holes ap-
pear unresolved. In the profile of the restored image shown
in Fig. 6(b), the three holes appear resolved. A fine enough
scan step and sufficient contrast in the restored image en-
abled the three holes to be resolved. The contrast achiev-
able during the restoration process is governed by the noise
in the raw image and also the numerical noise introduced
by the deconvolution procedure, even if it is assumed that
the computed PSF contributes negligible numerical noise.

However, it is important to bear in mind that decon-
volution does not automatically ensure that all features
in the raw image would be resolved. Suppose the PSF is
available at a very fine scan step and the raw image is at
a coarse scan step (often due to time and scanner limita-
tions). Because restoration through deconvolution requires
the raw image grid and the PSF grid be identical, either
that raw image has to be interpolated to match the PSF
grid or the PSF grid has to be coarsened to match the raw
image grid. Interpolating the raw image can lead to ar-
tifacts. Different interpolation schemes may result in pro-
ducing different nonexisting features in the restored image.
Coarsening the PSF grid restricts the resolving capabili-
ties otherwise inherent in the transducer characteristics.
Fig. 21 shows the effect of restoring the coarsened raw

Fig. 21. Reduction in contrast of restored image with coarsening of
scan step. The raw image in Fig. 5(a) was coarsened to 0.2 mm and
0.3 mm. The deconvolution was performed using PSFs coarsened to
match the corresponding image grid.

image of the five-hole object with appropriately coarsened
PSF. It can be seen that the contrast in the images reduces
rapidly with increase in scan step.

V. Conclusions

The PSF computation, like transducer characterization,
is a one-time procedure to ascertain the resolving capa-
bilities of a transducer. Calculation of the PSF requires
characterizing the transducer. Fig. 22 depicts a flowchart
indicating a procedure that can be followed (and the one
used in this paper) for characterization of planar trans-
ducers. Given the transducer parameters, the PSF is eval-
uated for any specific imaging configuration. Fig. 23 shows
a flow chart indicating a procedure that can be used for
deconvolution-based sizing, using the PSF for the chosen
imaging configuration. It may be noted from Fig. 23 that
image restoration is done with time-gated signals and does
not require a priori knowledge of the flaw depth. Examples
of how ultrasound images can be restored and how defects
can be sized through deconvolution using the computed
PSF with minimal noise have been discussed. We also
note that the capability of evaluating the PSF helps imag-
ing parameters such as imaging distance, scan step, and
frequency to be optimized for a variety of apertures and
apodizations. The medium in which the beam is launched
and collected is found to determine the PSF even in cases
where the flaws need to be imaged across planar interfaces
separating two media. In addition to the commonly en-
countered immersion-based imaging, contact mode imag-
ing with wedge- or roller-based transducers would also ben-
efit from this feature as it simplifies the PSF computation.
The PSF evaluator in this paper is general, capable of han-
dling array configurations and/or newer imaging configu-
rations that may lead to possibly higher lateral resolutions
in the near field as well as in the far field. Experiments
using other transducer configurations such as the phased
array and the focused transducer are underway.
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Fig. 22. Flowchart outlining a procedure for characterization of planar transducers.

Fig. 23. Flowchart describing the PSF-based deconvolution using a characterized transducer. Option (a) is recommended; option (b) is for
improved image restoration through deconvolution.
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