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1 Introduction

Discontinuous Galerkin methods are finite element methods distinguished by
the use of piecewise discontinuous functions across element boundaries to ap-
proximate the solution of a boundary value problem. Discontinuous Galerkin
methods have been remarkably successful as high-order versions, and natu-
ral generalizations to unstructured meshes, of finite volume methods for hy-
perbolic conservation laws (see [5]). In this case, discontinuities across ele-
ment boundaries permit the crafting of conservative and monotone schemes
by adopting piecewise constant approximations within each element, as well
as the simple use of slope limiters to achieve stability for high-order schemes.
Hence, the introduction of discontinuous fields across element boundaries pro-
vides a clear set of algorithmic advantages.

Similar algorithmic advantages are encountered in the context of elliptic
problems with constraints, for example, incompressible elasticity. In this case
in addition to the mechanical equilibrium equation, the solution must sat-
isfy the incompressibility constraint. It is well know that if piecewise affine
conforming (i.e., continuous) finite elements are adopted, then the subset of
the discrete space that satisfies the constraint almost everywhere may become
so poor that its approximation properties are severely deteriorated. This is
commonly known as locking. One way around this problem is by trading the
importance of constraints, namely, it is possible to relax the continuity con-
straint across element boundaries to strongly impose the incompressibility one
without any loss in accuracy (order of convergence), see [20, 11, 9]. This idea of
trading the enforcement of the inter-element continuity constraint to strongly
impose others, without any loss of accuracy, is a pattern that repeatedly ap-
pears in many applications for which DG methods display a clear algorithmic
advantage.

A second such example is found in the solution of some structural models
of shells, plates and beams [8, 14, 18, 2, 4, 10]. The constraint in this case
is the compatibility relation between the rotational and displacement degrees
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Fig. 1. On the left, evolution of the traction at the inner wall of the cylinder as
a function of the relative expansion of the inner radius. Results computed with
conforming (CG) and discontinuous (DG) Galerkin methods are shown, for two
near incompressible cases, ν = 0.499, 0.4999, where ν is the Poisson ratio. The exact
solution is also shown for comparison. It is apparent from these results that the
method is locking–free in the finite strain case. The use of discontinuities to enforce
the incompressibility constraint is clearly revealed in the figure on the right, which
depicts the deformed mesh in the CG case, with enlarged views of the area enclosed
by a square for both CG and DG approximations. The small protruding cusp in the
CG mesh testifies to the large stresses created within to satisfy the incompressibility
constraint. In contrast, these are easily relaxed through discontinuities in the DG
case, as the contour plots therein reveal

of freedom, which is nearly exactly enforced as the thickness of the structure
becomes very small. Known as shear locking, it can be overcome by again
relaxing the continuity constraint along element boundaries and switching to
a DG formulation. A third such example arises in the context of immersed
boundary methods, as we shall demonstrate later in the manuscript. In this
case the constraints are the Dirichlet boundary conditions on the immersed
boundary, which may lead to a deteriorated convergence rate. Optimal con-
vergence rates are recovered once a discontinuous Galerkin discretization is
introduced. Finally, in the context of high-order equations, such as for gradient
plasticity theories [6, 7] and some phase transition models [19], the introduc-
tion of discontinuities in the approximation of the derivative helps overcome
the difficulties in constructing conforming spaces with continuous derivatives
on unstructured meshes.

The goal of this article is to highlight some of the main ideas and showcase
some examples of our own work on the subject. With this in mind, section 2
introduces a few highlights of the method, in the form of numerical examples.
In section 3, we formally present the class of discontinuous Galerkin methods
which have been adopted in this article. Their application for nonlinear elastic
problems is described in section 4, where we also briefly discuss the crucial
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(a) Snapshots for the discontinuous Galerkin solution

(b) Snapshots for the continuous Galerkin solution

Fig. 2. Compression of an elastic block. Comparison between the continuous and
discontinuous Galerkin solutions obtained with affine shape functions within each
element

subject of stabilization. Finally, section 5 briefly describes a discontinuous-
Galerkin-based immersed boundary method.

2 Examples

Incompressibility constraint at finite strains. The following example
from [9] illustrates how discontinuities across element boundaries are actu-
ally used to accommodate the nonlinear incompressibility constraint at large
deformations. We consider a cylinder under plane strain, made of a nearly in-
compressible neo-Hookean material, whose external wall is traction free. The
internal boundary, in contrast, is deformed to acquire a new radius r0 from its
traction-free value of R0. Both continuous and discontinuous Galerkin meth-
ods with an affine interpolation within each element were adopted. The results
are depicted and explained in Fig. 1.

Mesh-based kinematic constraints. The following example from [9] dis-
plays an unusual constraint, introduced by the choice of the mesh. An elastic
block made of a compressible neo-Hookean material is squeezed by imposing
displacements on its top and bottom faces, as shown in Fig. 2. Because of the
lack of symmetry of the mesh, the symmetry of the exact problem is lost at
some point during the loading path when continuity is enforced, while it is
mostly restored when the latter is relaxed.



4 Adrian Lew, Alex Ten Eyck, and Ramsharan Rangarajan

10− 5

10− 4

10− 3

10− 2

10− 1

100

10− 2 10− 1 100

h/h 0

» h2

» h

DG L2

DG L∞

CG L2
CG L∞

Er
ro

r

Fig. 3. A simulation with a DG-based immersed boundary method. The domain of
the problem, a circular ring, is immersed in an arbitrary mesh, as shown on the left.
Made of a linear elastic material, the ring is stretched by imposing Dirichlet bound-
ary conditions on its entire boundary. The L2 and L∞ errors in the solutions as a
function of the mesh size are shown on the right, for both CG and DG approximation
spaces constrained to satisfy the Dirichlet boundary conditions on the approximate
boundary of the domain. The CG method displays a sub-optimal convergence rate,
again recovered by simply relaxing the continuity constraint across element bound-
aries. In this case, a DG approximation is only adopted in those elements intersected
by the boundary

Boundary conditions as constraints. The term immersed boundary meth-
ods broadly describes methods in which the boundary of the domain may cut
through elements in the mesh; see Fig. 3. The problem of generating a mesh
in a complicated geometry is in this way circumvented. It is replaced, how-
ever, by the need to devise strategies to impose boundary conditions on the
immersed boundary. The natural idea of simply constraining the continuous
finite element space over the mesh to satisfy prescribed Dirichlet boundary
generally leads to suboptimal approximation properties, known as boundary
locking. This is not the case when a DG discretization is adopted, as clearly
showcased in Fig. 3 and described in [12].

Competitive performance. Not every problem presents a set of competing
constraints for which it is convenient to relax the continuity across element
boundaries. A known drawback of DG methods in these cases is that often
they have a significantly larger number of degrees of freedom than CG methods
on the same mesh. These additional degrees of freedom are generally used to
obtain a better approximation of the solution. When CG and DG solutions
with the same number of degrees of freedom are compared, the former is
generally more accurate, but the latter is often competitive. This is illustrated
in Fig. 4 from [17], for a two-dimensional case. The contrast in the performance
of both methods is often larger for three-dimensional computations.
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(a) L2-error in displacements
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(b) L2-error in the deformation gradient

Fig. 4. Convergence plot for the displacements (left) and deformation gradient
(right) as a function of the number of degrees of freedom for a two-dimensional
nonlinear elasticity example. For this case, the CG approximation is more efficient
than the DG one for the computation of displacements, while the situation is reversed
in the case of the deformation gradient

Large-scale simulations. We show next an application that benefits from
the lack of locking for incompressible elastic materials of DG discretizations,
and simultaneously demonstrates the possibility of utilizing them for the so-
lution of large solid mechanics problems. It consists of the simulation of the
mechanical response of a 503 µm3 sample of blood-vessel microstructure (the
media), obtained with novel scanning electron microscopy techniques [15]. Re-
gions that contain elastin have been segmented, as shown in black in Fig. 5.
This rather heterogeneous microstructure was meshed with 175,616 trilinear
hexahedra, totaling 4,214,784 degrees of freedom when the DG discretization
was adopted. As a first step towards a more comprehensive study, elastin was
assumed to be an isotropic linear elastic material immersed in incompressible
water. With proper preconditioning of the linear system [17], the deformation
of the sample could be solved in 512 processors in approximately one hour,
allowing us to perform multiple simulations in one day.

3 Formulation of discontinuous Galerkin methods

The essential component in the construction of a DG method is the speci-
fication of how derivatives of functions are approximated. Since functions in
the DG space may be discontinuous across element boundaries, their distribu-
tional derivatives may contain a singular part in the form of delta functions.
Consequently, instead of approximating the derivative of a smooth function
u with the exact distributional derivative of its discrete approximation uh,
we do so with another possibly piecewise discontinuous function, which we
denote DDGuh.
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(a) Regions of elastin, in black. (b) Shear strain under torsion

Fig. 5. Large-scale simulation to study the mechanical response of a of 503
µm3 sam-

ple of blood-vessel microstructure. The material distribution in the mesh is shown
on the left, with black for elastin and gray for everything else. Contour plots of the
shear strain are depicted on the right. Each solution took approximately one hour
in 512 processors, enabling the study of multiple loading conditions in a single day

We describe next the construction of DDGuh in the simplest case, when
uh = 0 on ∂Ω, where Ω is the domain, and the same discrete space Vh contains
uh and each component of DDGuh. The more general case can be found in
[9]. The starting point is the following integration by parts identity:∑
E∈Th

∫
E

∇uh ·w dV =
∫

ΓI

([[uh]] · {w}+ {uh} · [[w]]) dS−
∑

E∈Th

∫
E

uh∇ ·w dV,

(1)
valid for any w ∈ V d

h , where d is the number of components of ∇uh. Here ΓI

indicates the set of all element faces in the mesh that do not lie on ∂Ω. The
jump [[·]] and average {·} operators are defined as

[[v]] = v+n+ + v−n− {v} =
1
2
(v+ + v−), (2)

where v± denotes the trace of v on either side of a face, and n± the corre-
sponding external unit normal. An eminently intuitive idea for the definition
of DDGuh consists in assuming that u is well approximated by uh in the inte-
rior of every element, and by {uh} at element boundaries. An approximation
of ∇u can then be constructed by requesting DDGuh to satisfy an equation
similar to (1), namely
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Fig. 6. Snapshots along the loading path of a nonlinear elastic cylinder. An adaptive
stabilization strategy was adopted here, to automatically adjust the energetic cost
of discontinuities as the deformation evolves. A nonzero stabilization term has been
added only in the set of colored elements: the darker the color, the stiffer the term.

∑
E∈Th

∫
E

DDGuh · w dV =
∫

ΓI

{uh} · [[w]] dS −
∑

E∈Th

∫
E

uh∇ · w dV, (3)

for any w ∈ V d
h , where we have taken advantage that [[{uh}]] = 0. Alternative

DG methods are obtained by assuming other approximations of u at element
boundaries. Fortunately, it is possible to explicitly solve (1) and (3) for DDGuh

as a function of uh to obtain

DDGuh = ∇uh + R([[uh]]) (4)

in the interior of every element E. Here R is a linear operator on [[u]] that
returns a function in V d

h , and that can be precomputed for any given mesh,
see [1, 9]. Notice that when uh is continuous, (4) simply returns the standard
definition of a derivative. Finally, when non-homogeneous Dirichlet boundary
conditions are present, they can either be incorporated into DDGuh for weak
enforcement, or simply constrain Vh to satisfy them.

4 Application: Nonlinear Elasticity

The nonlinear elasticity problem consists in finding local minimizers of the
potential energy functional within some suitable functional space V d. Its DG
approximation is obtained by simply finding a local minimizer ϕh in V d

h of
the discrete potential energy functional

Ih[ϕh] =
∑

E∈Th

∫
E

[W (DDGϕh)− f · ϕh] dV. (5)

Here W is the strain energy density and f the body force per unit volume.
The examples in Figs. 1, 2, 4 and 5 have all been obtained in this way.
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(a) Original (b) Immersed (c) Approximate (d) Deformed

Fig. 7. Three-dimensional example of a femur simulated with a DG-based immersed
boundary method. The original geometry in Fig. 7(a) is immersed in a mesh of
tetrahedra, Fig. 7(b). An approximate geometry is extracted, shown in Fig. 7(c),
which is then subjected to compressive loads on its two ends. Modeled as a linear
elastic material, the amplitude of deformations in Fig. 7(d) have been amplified
for clarity. The DG-IBM method sidesteps the creation of meshes in complicated
geometry while retaining an optimal order of convergence

A crucial difficulty encountered when relaxing the continuity constraint
across element boundaries is that often V d

h 6⊆ V d. One of its consequences
is that the potential energy Ih is not guaranteed to even have a finite lower
bound in V d

h , and often it does not. The standard strategy in this case is to
add a stabilization term to (5), in the form of a potential energy cost for each
discontinuity in the solution, see [16, 17]. When the energetic cost of jumps is
large enough, a stable scheme is recovered.

A delicate balance is required then. The additional term should be large
enough to stabilize the problem, but not too large to essentially prevent any
discontinuity from appearing. For classical linear elasticity the “right” size
of the stabilization term is known [13], but in general its fully automatic
and efficient selection is still an open problem. We have recently made some
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progress by introducing the idea of adaptive stabilization [16, 17], but more
comprehensive solutions may still be possible, see Fig. 6.

Finally, the convergence of the method for the classical linear elasticity
problem was proved in [13]. Since each approximate solution as the mesh is
refined is not even in H1, the convergence of displacements was proved in the
space of functions of bounded variations to any exact solution in H2. Fur-
thermore, displacements and stresses converge in L2. In the nonlinear elastic
case the convergence for the simpler case of a convex strain energy density
was obtained in [3], by Gamma-convergence.

5 Application: A DG-based immersed boundary method

The two key ingredients in the construction of an immersed boundary method
(IBM) are the approximation of the domain and how boundary conditions are
imposed. Both need to work cooperatively to retain an optimal order of conver-
gence. This is the reason for the profusion of first order methods, the crafting
of complicated schemes to recover second-order, and the nearly absolute ab-
sence of high-order ones. These and other aspects in the case of homogeneous
Dirichlet boundary conditions on ∂Ω are extensively discussed in [12], while
the non-homogeneous case is the subject of an upcoming manuscript. A three-
dimensional application of the DG-based IBM to elasticity is shown in Fig.
7, obtained by simply introducing discontinuities across the boundaries of all
elements intersected by the immersed boundary, and finding the stationary
points of (5).
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