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SUMMARY

We introduce a new method to triangulate planar, curved domains that transforms a specific collection of
triangles in a background mesh to conform to the boundary. In the process, no new vertices are introduced,
and connectivities of triangles are left unaltered. The method relies on a novel way of parameterizing an
immersed boundary over a collection of nearby edges with its closest point projection. To guarantee its
robustness, we require that the domain be C 2-regular, the background mesh be sufficiently refined near the
boundary, and that specific angles in triangles near the boundary be strictly acute. The method can render
both straight-edged and curvilinear triangulations for the immersed domain. The latter includes curved
triangles that conform exactly to the immersed boundary, and ones constructed with isoparametric map-
pings to interpolate the boundary at select points. High-order finite elements constructed over these curved
triangles achieve optimal accuracy, which has customarily proven difficult in numerical schemes that adopt
nonconforming meshes.

Aside from serving as a quick and simple tool for meshing planar curved domains with complex shapes,
the method provides significant advantages for simulating problems with moving boundaries and in numer-
ical schemes that require iterating over the geometry of domains. With no conformity requirements, the
same background mesh can be adopted to triangulate a large family of domains immersed in it, including
ones realized over several updates during the coarse of simulating problems with moving boundaries. We
term such a background mesh as a universal mesh for the family of domains it can be used to triangulate.
Universal meshes hence facilitate a framework for finite element calculations over evolving domains while
using only fixed background meshes. Furthermore, because the evolving geometry can be approximated with
any desired order, numerical solutions can be computed with high-order accuracy. We present demonstrative
examples using universal meshes to simulate the interaction of rigid bodies with Stokesian fluids. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We introduce a new way to triangulate sufficiently smooth planar, curved domains immersed in
nonconforming triangulations. The method consists in mapping triangles in a given background
mesh to (possibly) curvilinear ones resulting in a spatial discretization for the immersed domain that
approximates it with any desired accuracy. Specifically, we show how to map select collections of
triangles in a background mesh

(i) to a straight-edged triangulation of polygons whose sides interpolate the immersed boundary,
(ii) to a curvilinear triangulation whose curved edges conform exactly to the immersed boundary,

and
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(iii) to a curvilinear triangulation whose curved edges interpolate the immersed boundary at select
points.

In addition to serving as a quick and simple tool for meshing planar domains with complex shapes,
the method provides useful algorithmic advantages while simulating problems with moving bound-
aries and in numerical schemes that require iterating over the geometry of domains. We showcase
the benefits of adopting curvilinear triangulations determined with this method to problems that are
sensitive to boundary perturbations and in achieving optimal accuracy in high-order FEMs.

The idea presented here for mapping background meshes into conforming ones offers a fresh per-
spective on the familiar problem of triangulating/meshing planar domains [1–3]. We make specific
choices for (1) the collection of triangles in the background mesh to be transformed and for (2)
the mapping from these triangles onto a conforming triangulation for the domain. For the former,
we select the triangles that have at least one vertex inside the domain. We then construct a map-
ping whose restriction to the boundary of the selected collection of triangles equals the closest point
projection of the immersed boundary and that equals the identity beyond a small neighborhood of
it. Simple modifications of such a construction yields straight-edged/curvilinear triangulations that
interpolate the immersed boundary at select points rather than conform to it exactly, see Sections 2
and 4.

That said, the distinguishing feature of the method decidedly lies in the context of problems with
evolving geometries. Such problems are ubiquitous, including ones with interactions between flu-
ids and solids, problems with free boundaries and moving interfaces, domains with propagating
cracks, problems involving phase transformations, and structural topology optimization. With uni-
versal meshes, we have addressed one important question that arises in their simulation, namely that
of robustly discretizing the evolving domain. The reasons are quite conspicuous. Foremost among
them is the fact that the same background mesh can be utilized for discretizing evolving domains by
merely perturbing appropriate collections of triangles. We term such a background mesh a universal
mesh for the family of domains it can be used to triangulate. A sufficiently refined triangulation
of a square can hence serve as a universal mesh for a large family of domains immersed in it.
Moreover, we impose no conformity requirements on the universal mesh; for instance, none of its
vertices need to lie on the boundary. Connectivities of triangles are retained unaltered from the uni-
versal mesh and no new vertices are introduced. Hence, sparse patterns of data structures involved
in numerical simulations can be retained across updates to the geometry. In Sections 6.2 and 6.3, we
present demonstrative examples using universal meshes to simulate the interaction of rigid bodies
with Stokesian fluids.

There is a large volume of literature on prescribing vertex motions for simulating problems with
moving boundaries. For example, arbitrary Lagrangian–Eulerian methods displace vertices in the
interior of moving domains based on the trajectories of vertices on moving boundaries and interfaces
[4–10]. The requisite displacements/velocities for vertices are commonly computed using analo-
gies with mass-spring systems [11, 12], hyper-elastic models [13, 14], or harmonic operators [15].
Vertex motion may also be prescribed to adapt meshes for the purpose of improving the accuracy of
numerical simulations, as performed in r-adaptive methods [16–20].

In contrast to the above methods, we prescribe transformations for triangles in background meshes
solely for the purpose of geometric conformity with the immersed boundary. Despite the seeming
simplicity of such an idea, meshing algorithms based on just perturbing vertices are hardly ubiq-
uitous in the literature. There is considerable freedom in deciding how to transform a background
mesh into a conforming one. Our choice was briefly mentioned earlier; alternatives are certainly
plausible. But the challenge lies in discerning when such algorithms are robust. It is common knowl-
edge that perturbing vertices can result in degenerate or inverted triangles, and in general, yield
tangled meshes, see Figure 3 for an example.

Without guarantees for the qualities of resulting meshes, heuristic perturbation-based meshing
algorithms are seldom adopted in practice. Instead, evolving domains are commonly handled in
numerical simulations by remeshing after each update to its boundary [21]. Immersed and embed-
ded boundary methods on the other hand bypass the need for frequent remeshing by approximating
domains using background meshes [22, 23]. However, these methods necessarily introduce the
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question of how to impose prescribed boundary conditions and interfacial constraints while accom-
modating nonconforming meshes. They may have to be imposed using penalty [24], with Lagrange
multipliers [25, 26], with Nitsche’s method and its variants [27, 28] or by enriching the space of
admissible solutions near the immersed boundary as performed in extended FEMs [29, 30] and dis-
continuous Galerkin methods [31–33]. Phase field methods also enable tracking moving boundaries
and interfaces over nonconforming meshes by augmenting problem formulations with additional
fields [4, 34, 35].

Success of the method introduced here requires ensuring that the mapping defined over trian-
gles in the background mesh onto the immersed domain is a homeomorphism. To this end, we have
to impose restrictions on both the domain and the background mesh in which it is immersed. We
assume sufficient regularity for the domain, restrict the local mesh size near its boundary, and insist
that specific angles in triangles near the boundary be strictly acute. These restrictions are motivated
and discussed in detail in Section 2.5. These conditions show for instance that any given smooth
domain can be triangulated using only a sufficiently refined background mesh of equilateral tri-
angles. We cannot however make such a claim with background meshes of right-angled triangles
because such meshes may violate the requirement that certain angles be acute.

In addition to its simplicity and robustness, the triangulation method with universal meshes
also renders spatial discretizations with high-order accuracy. Almost without exception, numerical
schemes that adopt nonconforming background meshes, including the ones mentioned earlier, resort
to polygonal approximations for the immersed domain. The accuracy of these schemes depends
also on how prescribed boundary conditions and interfacial constraints are imposed. Consequently,
achieving optimal accuracy with high-order interpolations has proven difficult. To construct high-
order methods, it is imperative to approximate the immersed domain sufficiently well over the
background mesh. Both constructions for curvilinear triangulations described in Section 4 achieve
the requisite accuracy, see the example in Section 5.2. In fact, curved edges in the first construction
conform exactly to the immersed boundary and thereby yields an exact discretization for it. The
second is an isoparametric mapping that results from interpolating the first construction at select
points of the background mesh. In Section 5.2, we revisit the problem of computing the deforma-
tion of a simply supported circular plate in bending, which is known to be sensitive to how well the
curved boundary is represented [36].

Finally, we mention that the spatial discretization adopted for curved domains can prove critical
not just to the accuracy of numerical schemes but also to their robustness. A familiar case in point are
problems in computational contact mechanics. Adopting piecewise smooth (in particular polygonal)
representations for smooth domains can result in nonsmooth contact events, which are often purely
numerical artifacts that culminate in convergence difficulties [37, §9.6]. Such hindrances can instead
be circumvented by resorting to the conforming curvilinear discretizations described here.

2. TRANSFORMING BACKGROUND MESHES INTO CONFORMING MESHES

It is both instructive and convenient to discuss the construction of straight-edged conforming tri-
angulations from background meshes before proceeding to the construction of curvilinear ones.
Consider a planar, bounded, curved domain � that is an open set in R2 and is immersed in a
background triangulation Th. Recall that Th is a triangulation if

(i) each triangle in Th is a nonempty set and
(ii) if K1 and K2 are distinct triangles in Th, then K1 \K2 is either empty, a common edge or a

common vertex.

The diameter of a triangle K in Th is denoted by hK , and the mesh size of Th is denoted by the
parameter h WD maxK2Th hK . By � being immersed in Th, we mean that the set triangulated by Th
contains �. We endow � WD @� with an orientation specified by

s.x/ WD

²
�1; if x 2 �;
C1 otherwise:

(1)
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Figure 1. Examples illustrating the definition of triangles positively cut by � and their positive
edges. In figures (a), (b), and (c), triangle K is positively cut because s.u/ D s.v/ D 1 and
s.w/ D �1. The edge joining vertices u and v is a positive edge. In figure (d),K is not positively cut because

s D 1 at only one of its vertices.

The closest point projection onto � , � W R2 ! � , is defined as

�.x/ WD arg min
y2�

d.x; y/; (2)

where d.�; �/ is the Euclidean distance in R2. Related to the closest point projection is the signed
distance to � , � W R2 ! R defined as �.�/ WD s.�/ � d.�; �/, where d.�; �/ WD miny2� d.�; y/.

At the outset, we assume no conformity between Th and � . In particular, no vertex of Th needs to
lie on � . The mapping in (3) perturbs a few vertices of Th in the vicinity of � to yield a triangulation
T c
h

that conforms to � in the sense that the collection of edges in T c
h

with both vertices on each
connected component of � is nonempty and forms a simple, closed, polygonal chain.‡

2.1. Positively cut triangles, positive edges and conditioning angles

To describe how to perturb vertices in the background mesh, we introduce the terminology of
triangles positively cut by � . We say that a triangle K in Th is positively cut by � if s D C1 at
two vertices and s D �1 at the remaining one. In Figures 1a, 1b, and 1c, K with vertices ¹u; v;wº
is positively cut by � because s.u/ D s.v/ D 1 and s.w/ D �1. We then call the edge joining
vertices u and v as a positive edge with respect to � . When the curve � is clear from the context,
we will simply refer to positively cut triangles and positive edges. The union of positive edges in
Th is denoted by �h. Identifying positively cut triangles and positive edges in a background mesh
requires only examining the value of s at its vertices. It does not, for instance, entail inspecting how
or how many times � intersects the edges in the background mesh.

The proximal vertex of a positively cut triangle K is the vertex of its positive edge closest to � .
In Figure 1c for example, u is the proximal vertex of K. When both vertices of the positive edge
are equidistant from � , the one containing the smaller interior angle of K is designated to be the
proximal vertex. If the angles are equal as well, either vertex of the positive edge can be designated
as the proximal vertex. Finally, the conditioning angle of a positively cut triangle is the interior angle
at its proximal vertex.

2.2. Description of the meshing algorithm

Let T sub
h

be the collection of triangles in Th that have s D �1 at one or more vertices. The meshing
algorithm consists in transforming T sub

h
to T c

h
and is succinctly summarized as the mapping Mh

defined over vertices in T sub
h

as

Mh.x/ D x � fh.x/N.�.x//; (3)

‡A polygonal chain is a curve specified by a sequence of points .v0; v1; : : : ; vn/ called its vertices, so that the curve
consists of line segments connecting consecutive vertices.
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where N is the unit outward normal to � . The function fh in (3) is defined using parameters ˛ 2
.0; 1� and Rr > h equal to a few multiples of the mesh size as

fh.x/ D

8<
:
�.x/ if x 2 �h;

˛hmax

²
0; 1C

�.x/

Rr

³
otherwise:

(4)

We will postpone a discussion of when Mh is well defined and instead examine a few critical
features evident from (3) and (4). It is clear from (3) thatMh perturbs vertices along the direction of
the local normal to � by a distance that is modulated by fh. Examining the action ofMh on positive
edges, we see that

x 2 �h ) fh.x/ D �.x/ ) Mh.x/ D x � �.x/N.�.x// D �.x/; (5)

where the last equality holds when � is sufficiently smooth and x lies close to it [38]. Hence, vertices
of positive edges are snapped to their closest point in � .

To accommodate such snapping, vertices in the neighborhoodB.�;Rr/ WD ¹x 2 R2 W d.x; �/ <
Rrº are relaxed away from � . At vertices in � farther than distance Rr from � , we have

x 2 � n B.�;Rr/ ) �.x/ < �Rr ) fh.x/ D 0 ) Mh.x/ D x: (6)

Hence, vertices in � that lie outside the Rr -neighborhood of � are left undisturbed by Mh. Since
Rr is chosen to be a few multiples of the mesh size, (6) indeed shows thatMh is a local perturbation
of vertices near � . It is also a small perturbation because the distance by which these vertices are
perturbed equals fh and jfhj 6 ˛h.

The specific form of fh in (4) is one that is particularly suitable for relaxing vertices in
background meshes that have uniformly sized triangles near the boundary. It leaves much to be
desired—notice that fh is in fact (and in general) discontinuous at �h. This is not a problem because
as we will see in Section 2.5, we only need control over the magnitude of fh and its difference
quotient over vertices near � . There is certainly room to improve the choice of fh, especially to
relax vertices by distances that are commensurate with perturbations of vertices of positive edges in
background meshes that have triangles of widely varying sizes near the boundary.

2.3. An illustrative example

Figure 2 shows an example of a curved domain bounded by a collection of 22 cubic splines
immersed in a background mesh of equilateral triangles. For the choice Rr D 3h, Table I lists
some statistics on the resulting conforming meshes. Starting with a background mesh Th, the
meshes refine.Th/, refine2.Th/, and refine3.Th/ in the table correspond to its successive self-similar
refinements. With each such refinement, the mesh size is halved and the number of triangles is
quadrupled.

Table I highlights that most triangles in the conforming mesh are retained unaltered from the back-
ground mesh, especially when the latter is sufficiently refined. For the choice ˛ D 0:75, qualities
of triangles in the conforming meshes are reported in Table IIa. Besides the minimum and maxi-
mum angles, we also report the ratio of the circumradius to the inradius, which has a best possible
value of 2 that is attained in equilateral triangles. Table IIb incorporates additional perturbations for
a few vertices close to the boundary to improve the quality of the images of positively cut triangles
in the conforming mesh. Details of these perturbations are described subsequently in Section 3.5.
The meshes in Figure 2 correspond to the second row in Tables I and II. Table II serves to show that
the quality and extreme angles of the computed meshes for the example do not deteriorate as the
background mesh is refined.

2.4. Need for restrictions on background meshes

Perturbing vertices according to Mh in (3) raises a few inescapable questions.

(i) Suppose that Mh is well defined and the vertex perturbation algorithm executes successfully.
Is the resulting mesh T c

h
a conforming triangulation of �?
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Figure 2. Example demonstrating the algorithm to perturb vertices of a collection of triangles in a back-
ground mesh to make it conform to a curved domain. The domain shown on the left is enclosed by a
collection of cubic splines and is immersed in a mesh of equilateral triangles Th. The triangles shaded in
light and dark gray have at least one vertex in the domain and constitute the sub-triangulation T sub

h
. Triangles

positively cut by the boundary are shaded in dark gray. Just the vertices marked by dark dots are perturbed
by Mh, thereby transforming T sub

h
into the conforming mesh T c

h
shown on the right.

Table I. Given a background mesh Th, refinei .Th/ is the mesh resulting from i self-similar
subdivisions of Th. With Th and its successive refinements as background meshes, the
second column in the table lists the number of triangles that are retained in the conforming
mesh for the domain shown in Figure 2. The number of triangles positively cut by the
boundary are listed in the third column. Column four lists the fraction of triangles in the
conforming mesh that are retained unaltered (equilateral) from the background mesh for
the choice Rr D 3h. Since Th is quite coarse, a significant fraction of triangles in T sub

h
are altered in the algorithm; with refinement, we see that most triangles in the background

mesh are left undisturbed.

Table II. Qualities of triangles in conforming meshes in the example discussed in Section 2.3 while using
parameters Rr D 3h and ˛ D 0:75 in (4). Ranges of three quality metrics are listed— the maximum
value of the ratio of the circumradius to the inradius is reported in the first column and the minimum and
maximum angles in the mesh are reported in subsequent columns. Table IIb incorporates additional pertur-
bations for vertices close to the boundary that alters the collection of positively cut triangles to improve the
quality of their images. Details of these perturbations are given in Section 3.5. These perturbations require
a parameter �, which is chosen to be 0:2. We highlight the resulting improvement in qualities of the meshes

in Table IIb compared to the ones in Table IIa.
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Figure 3. Example to illustrate that without restrictions on the background mesh, perturbing vertices with
Mh in (3) can result in degenerate and overlapping triangles even when the boundary � is locally straight.
For simplicity, only a few triangles near the boundary are shown. TrianglesK5�14 belong to T sub

h
, andK5�8

shaded in gray are positively cut by � . Upon perturbing the vertices according to (3), the images of triangles
K5�10 overlap in the resulting mesh, and the orientations of triangles K6 and K7 are reversed. Since � is
locally straight, this example shows that merely refining the background mesh cannot ensure success of the

meshing algorithm; additional restrictions are necessary.

(ii) When is the mapping Mh well defined? If not always, can we find sufficient conditions for
Mh to be well defined and for T c

h
to be a conforming triangulation of �?

Neither question is pedagogical. Answering them is essential for practical implementations and to
guarantee the qualities of resulting meshes.

It is in fact quite easy to concoct examples that answer the first question —ones in which Mh is
well defined but the resulting mesh is tangled, see Figure 3. For simplicity, the boundary in the figure
is depicted as being (locally) straight. Only a subset of it is shown along with the nearby triangles in
the background mesh. In the example, trianglesK5�K8 shaded in gray are positively cut. Projecting
vertices of their positive edges onto the boundary cause the images of triangles K5�10 to overlap in
the resulting mesh in addition to reversing the orientations of triangles K6 and K7.

It is therefore evident that unless we impose restrictions on the background mesh, perturbing its
vertices may result in degenerate, inverted, and overlapping triangles of arbitrarily poor quality even
when the boundary has no curvature or features. Since � in the example shown has no inherent
length scale, merely refining the background mesh cannot guarantee success of the algorithm. While
considering curved boundaries with finite feature sizes, it is also necessary to consider sufficiently
refined background meshes. We refer the reader to [39] for more examples complementing the
discussion here; we do not repeat them here for the sake of brevity.

2.5. Guaranteeing success of the meshing algorithm: a simplified case

To guarantee that Mh is well defined and perturbing vertices in T sub
h

according to Mh yields a valid
triangulation T c

h
over � with bounded quality, the following conditions suffice:

(i) the domain � is C 2-regular,
(ii) � is immersed in Th in the sense that � � [K2ThK,

(iii) the triangulation Th is sufficiently refined in the vicinity of � ,
(iv) conditioning angle in each positively cut triangle in Th is strictly smaller than 90ı.

Conditions (i)–(iv) guarantee that � W �h ! � is a homeomorphism. To ensure that the
mapping for relaxing vertices is robust, we additionally require that

(v) triangles with precisely two vertices in � are acute-angled,
(vi) parameter Rr > h equals a few multiples of h, and

(vii) parameter ˛ is chosen such that .1C h=Rr/�1 6 ˛ 6 1.

A precise definition of C 2-regular domains can be found in [38]; for our discussion, it suffices to
note that � is C 2-regular if the signed distance � to � is C 2 in a neighborhood of � .

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:236–264
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Consider first the question of when Mh is well defined. Clearly, fh in (4) is well defined because
Rr ¤ 0. Following [38], we note that a C 2-regular boundary � has a well defined normal N
(in fact differentiable) because it is a C 2 curve. There is also a radius rn > 0, smaller than or
equal to the distance from the medial axis, such that � is C 1 and � is C 2 in the neighborhood
B.�; rn/. By definition, points in �h are within distance h from � . Hence, when h is sufficiently
small, �h � B.�; h/ � B.�; rn/ and consequently Mh is well defined because each term appearing
in (3) is.

Demonstrating that assumptions (i)-(vii) suffice to guarantee that the mesh T c
h

is a valid one is less
trivial. It entails showing that the transformation of triangles in T sub

h
to T c

h
is a homeomorphism. In

the following, we examine the special case in which � is locally straight. Although quite simplistic,
the calculations shown reveal the essential details, particularly the need for certain angles to be acute
and the choice of the relaxation map in (4).

The calculations shown next consider only the case h=rn � 1. Consequently, we lose the oppor-
tunity to examine the requirements on the mesh size that arise from the curvature and feature sizes
of the boundary. At the end of this section, we comment on the additional details that need to be
considered when � has nonzero curvature and finite feature sizes (i.e., when h=rn is small but finite).

2.5.1. Notation. Let .x; y/ be a Cartesian coordinate system for R2 such that � D ¹.x; y/ W
y D 0º and �.x; y/ D y. Let triangle K in Th have vertices ¹u1; u2; u3º and let vertex ui have
coordinates .xi ; yi / for i D 1; 2; 3. We choose an orientation for K such that its signed area �K

�K D
1

2

ˇ̌̌
ˇ̌̌ 1 x1 y11 x2 y2
1 x3 y3

ˇ̌̌
ˇ̌̌ > 0: (7)

Denote the lengths of edges joining the pairs of vertices u1 to u2, u2 to u3, and u3 to u1 by `1; `2,
and `3 respectively, and let 	i WD h=`i .

We examine the quality of the image QK of K that has vertices ¹ Qu1; Qu2; Qu3º, where Qui WDMh.ui /

for i D 1; 2; 3. We consider the cases in which one, two, or all three vertices of K lie in B.�;Rr/\
�. We show that QK has nonzero area � QK , the same orientation as K, and compute bounds for its
quality. As the quality metric Q, we pick one that is easy to estimate—the ratio of the longest to
the shortest edge. This non-dimensional metric has a best possible value of 1, attained in equilateral
triangles. Recall that in Table II, we used the ratio of the circumradius and the inradius to examine
the qualities of triangles. Alternative quality metrics and their properties can be found in [40]. Notice
that although the metric Q does not help identify flat triangles, together with the lower bound for
� QK , it in fact shows that flat triangles do not occur in the conforming mesh T c

h
and guarantees

bounds for the ratio of the circumradius to the inradius.
Finally, the lengths of edges in QK are denoted by Q̀i ; i D 1; 2; 3, defined analogous to `i ’s. The

factor 
 WD .1 � ˛h=Rr/, which appears repeatedly in the following calculations, lies between 0
and 1 owing to the choices ˛ < 1 and Rr > h.

2.5.2. Triangles with all vertices in � \ B.�;Rr/. By definition of Mh, we have

Qui D

�
xi ; yi � ˛h

�
1C

yi

Rr

��
: (8)

Then

� QK D
1

2

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ

1 x1 y1 � ˛h
�
1C y1

Rr

�
1 x2 y2 � ˛h

�
1C y2

Rr

�
1 x3 y3 � ˛h

�
1C y3

Rr

�

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ
D
1

2

�
1 �

˛h

Rr

� ˇ̌̌ˇ̌̌ 1 x1 y11 x2 y2
1 x3 y3

ˇ̌̌
ˇ̌̌ D 
�K : (9)
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It follows that QK has nonzero measure and identical orientation as K. The length Q̀1 of the edge
joining Qu1 and Qu2 is

Q̀2
1 D .x1 � x2/

2 C

�
y1 � y2 �

˛h

Rr
.y1 � y2/

�2
D `21 �

˛h

Rr

�
2 �

˛h

Rr

�
.y1 � y2/

2: (10)

Using 0 6 jy1 � y2j 6 `1 in (10), we obtain


`1 6 Q̀1 6 `1: (11)

Analogous estimates hold for lengths Q̀2 and Q̀3, resulting in the estimate for the quality of QK as


 6 Q.
QK/

Q.K/
6 1



: (12)

2.5.3. Triangles with exactly two vertices in �. Without loss of generality, assume that u1 … �.
Hence, Qu1 D .x1; 0/ while the coordinates of Qu2 and Qu3 are given by (8). Similar to the computation
performed earlier, we have

� QK D
1

2

ˇ̌̌
ˇ̌̌
ˇ̌
1 x1 0

1 x2 y2 � ˛h
�
1C y2

Rr

�
1 x3 y3 � ˛h

�
1C y3

Rr

�
ˇ̌̌
ˇ̌̌
ˇ̌ D 
�K C

1

2
.x3 � x2/.˛h � 
y1/ (13)

In the following, we use (7) and the assumption that K is acute-angled to show x3 > x2. Then,
because y1 6 h ) ˛h � 
y1 > 0 when ˛ > 1=.1 C h=Rr/, (13) yields the lower bound � QK >

�K . The upper bound follows immediately from y1 > 0 and jx3 � x2j 6 `2 6 h. Pending the
demonstration of x3 > x2, we obtain bounds for � QK as


�K 6 � QK 6 
�K C
1

2
˛h2: (14)

Now, let us see that x3 > x2. To this end, suppose that x3 < x2. Using x3 < x2 and y2; y3 <
0 6 y1 in (7), we obtain

2�K D y1.x3 � x2/C y2.x1 � x3/C y3.x2 � x1/;

6 y2.x1 � x3/C y3.x2 � x1/;
D jy2j.x3 � x1/C jy3j.x1 � x2/:

(15)

Equation (15) reveals that y2 < y3 is a necessary condition for �K > 0. It additionally shows that
x1 < x3 because both x3 6 x1 6 x2 and x3 < x2 6 x1 yield �K 6 0. Now, from the assumption
that the interior angle at vertex u3 is acute, we know .u1 � u3/ � .u2 � u3/ > 0 yielding

.x1 � x3/.x2 � x3/C .y1 � y3/.y2 � y3/ > 0: (16)

The first term in (16) is nonpositive because x1 < x3 < x2 while the second term is nonpositive
because y2 < y3 < y1. In this way, we conclude that x2 > x3 is impossible, which in turn affirms
the lower bound in (14).

Next, to compute the quality of QK, we estimate the lengths of its edges. We have

Q̀2
1 D .x1 � x2/

2 C

�
y2 � ˛h

�
1C

y2

Rr

��2
: (17)

Using 0 6 jx1 � x2j < `1 and �`1 < y2 < 0 in (17), we obtain

˛2h2 6 Q̀21 6 `21 C .˛hC 
`1/2: (18)

Thus we have shown that

˛	i`i 6 Q̀i 6
p
1C .˛	i C 
/2`i for i D 1; 3; (19)
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while as computed in (11), we have


`2 6 Q̀2 6 `2: (20)

Hence, the quality metric for QK is estimated by

min¹˛mini 	i ; 
ºq
1C .˛maxi 	i C 
/

2
6 Q.

QK/

Q.K/
6

q
1C .˛maxi 	i C 
/

2

min¹˛mini 	i ; 
º
: (21)

2.5.4. Triangles with exactly one vertex in � (positively cut triangles). Next, we consider how
positively cut triangles are transformed. Let K be positively cut, assume that the edge joining
vertices u1 and u2 is its positive edge and that u1 is its proximal vertex. Hence

y2 > y1 > 0 > y3: (22)

In the following, we first estimate the length of the edge joining vertices Qu1 and Qu2, namely Q̀1 D
jx1 � x2j. Specifically, we show that the acute conditioning angle assumption helps bound Q̀1 away
from zero. The idea behind the calculation is illustrated in Figure 4.

Since the conditioning angle #K of triangle K, namely the interior angle at vertex u1, is strictly
smaller than 90ı, we have

0 < cos#K W D
.u2 � u1/

`1
�
.u3 � u1/

`3
D
.x2 � x1/.x3 � x1/C .y2 � y1/.y3 � y1/

`1`3
: (23)

Noting from (22) that .y2 � y1/.y3 � y1/ 6 0, (23) implies that .x2 � x1/.x3 � x1/ > 0. Then,
without loss of generality, let us assume that

x2 � x1 6 0 and x3 � x1 6 0: (24)

Since sin#K > 0, we have

sin#K D j sin#K j D
p
1 � cos2 #K D

.x2 � x1/.y3 � y1/ � .x3 � x1/.y2 � y1/

`1`3
: (25)

Introduce angle ˇK defined by the relations

cosˇK WD
y3 � y1

`3
and sinˇK WD

x1 � x3

`3
: (26)

Figure 4. Illustration explaining the rationale behind the acute conditioning angle assumption. Triangle K
shown in the figure is positively cut by � , which is depicted as being (locally) straight. By projecting its
vertices u1 and u2 onto � , the length of its positive edge is scaled by a factor of sin.ˇK � #K/, where
#K is the conditioning angle of K and ˇK is defined in the figure (or by (26)). Since y1 > 0 and y3 < 0
together imply ˇK > 90ı, requesting that #K be strictly acute ensures that the lengths of positive edges in
the conforming mesh determined by the meshing algorithm are bounded away from zero. This in turn helps

guarantee that the images of positively cut triangles have good quality.
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By direct substitution, we obtain

cos.ˇK � #K/ D cosˇK cos#K C sinˇK sin#K D
y2 � y1

`1
: (27)

which in turn shows that

Q̀
1 D jx1 � x2j D x1 � x2 D `1j sin.ˇK � #K/j: (28)

Using (22) and (24) in the definition of ˇK implies cosˇK < 0 and sinˇK > 0. Hence, 90ı <
ˇK < 180

ı) 90ı � #K < ˇK � #K < 180
ı � #K . Therefore, (28) in fact shows that

cos#K 6
Q̀
1

`1
D sin.ˇK � #K/ 6 1: (29)

Equation (29) reveals quite clearly, the rationale behind the acute conditioning angle assumption.
Without #K < 90ı, x1 can be arbitrarily close to x2 or even equal to it. Then Q̀1 can be arbitrarily
small, resulting in QK becoming poorly shaped or degenerate. Equation (29) also helps identify a
simple strategy to improve the qualities of positive edges, i.e., ones in which Q̀1=` is not too small,
particularly when conditioning angles are close to 90ı. The idea is described in detail in Section
3.5 and consists in perturbing vertices to ‘eliminate’ positively cut triangles having ˇK close to
90ı. Equation (26) shows that this happens when y1 � y3 D �.u1/ � �.u3/ is small compared to
the triangle size. In such triangles, we simply perturb u3 to �.u3/; this operation alters the set of
positively cut triangles (K is then no longer positively cut) to ensure that positive edges have better
quality.

Equation (29) also helps estimate the area of triangle QK:

� QK D
1

2

ˇ̌̌
ˇ̌̌
ˇ
1 x1 0

1 x2 0

1 x3 y3 � ˛h
�
1C y3

Rr

�
ˇ̌̌
ˇ̌̌
ˇ D

1

2
.x1 � x2/ .˛h � 
y3/ : (30)

Using (29) and the (trivial) bound y3 > �`3 in (30) yields

1

2
˛h`1 cos#K 6 � QK 6

1

2
`1.˛hC 
`3/: (31)

To compute the quality Q. QK/ of QK, we estimate the lengths Q̀2 and Q̀3 as follows. We have

Q̀2
2 D .x2 � x3/

2 C

�
y3 � ˛h

�
1C

y3

Rr

��2
D .x2 � x3/

2 C .
y3 � ˛h/
2: (32)

Similarly for Q̀3. Analogous to (18), we obtain

˛2h2 6 Q̀2i 6 `2i C .˛hC 
`i /2 for i D 2; 3: (33)

A simple bound for the quality of QK hence follows as

min¹cos#K ; ˛mini 	iºp
1C .˛maxi 	i C 
/2

6 Q.
QK/

Q.K/
6
p
1C .˛maxi 	i C 
/2

min¹cos#K ; ˛mini 	iº
: (34)

Examining the bounds for the measure � QK of QK in (9), (14), and (31) suggests how to choose
parameters ˛ and Rr . Specifically, we would like to ensure that 
 is as close to 1 as possible, while
making ˛ as small as possible. Hence we select ˛ D .1Ch=Rr /�1 and Rr � h, the former being a
consequence of the requirement identified in Section 2.5.3. In the example discussed in Section 2.3
(and Figure 2), the value ˛ D 0:75 was in fact chosen this way, see also Table III.

Among the triangles in T sub
h

that are perturbed byMh, it remains to examine ones that have either
one or two vertices in � \ B.�;Rr/, and the remaining vertices in � n B.�;Rr/. Vertices of these
triangles that lie in � \ B.�;Rr/ are relaxed according to (3) while the ones in � n B.�;Rr/
remain unperturbed. We omit a discussion of these two cases for brevity sake and only note that
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Table III. Qualities of meshes produced by the meshing algorithm with parameters Rr D 3h
and ˛ D 3=4 for a circular domain of radius R immersed in background meshes of equilateral
triangles.The second, third, and fourth columns list in order, the minimum angle, maximum angle,
and the maximum ratio of the circumradius to the inradius among triangles in the conforming mesh
(similar to Table II). The metricQ introduced in the text is the ratio of the longest and shortest edge
lengths in a triangle. The values under columns titled Qn� for n D 1; 2; 3 report the maximum
values ofQ over triangles with n vertices inside the domain and the remaining 3�n vertices on the
boundary. Compare these values with the estimates for Q in (36) that corresponding to the limit

h=R! 0.

guaranteeing their quality essentially requires that Rr be sufficiently large. The critical cases of
transformed triangles in T sub

h
are the ones we have considered earlier.

The quality estimates in (12), (21), and (34) apply also to adaptively refined meshes. Since the
parameter 	i can be quite large in such meshes, some triangles in T c

h
can become poorly shaped

(but still remain non-degenerate as we have demonstrated with bounds for their areas). Alternative
choices for fh can certainly help improve the mesh quality when triangles near the boundary in the
background mesh have widely varying sizes.

2.5.5. Evaluating quality estimates. Let Rr equal three times the mesh size. In Section 2.5.3, we
identified the requirement

˛ >
�
1C

h

Rr

��1
D
3

4
; (35)

and hence 
 D 1 � ˛h=Rr D 3=4. In a background mesh of equilateral triangles, 	i D 1 for
i D 1; 2; 3. For these specific parameters, the upper bounds for Q estimated in (12), (21), and (34)
reduce to

Q 6

8̂<
:̂
4=3 for triangles with three vertices inside the domain;

2
p
13=3 .approx. 2:4/ for triangles with exactly two vertices inside the domain;

p
13 .approx. 3:6/ for triangles with exactly one vertex inside the domain:

(36)

We use the example of a circular domain of radius R immersed in background meshes of equi-
lateral triangles to scrutinize the bounds for Q in (36). Table III reports the qualities of meshes
conforming to the circle as the background mesh is refined. The most refined background mesh in
the table has mesh size that is about 1=100-th of the radius of the circle. In the resulting conform-
ing mesh, the maximum value of Q over triangles with all three vertices inside the domain, with
exactly two vertices in the domain, and with exactly one vertex in the domain are 1:28; 1:75, and
2:15, respectively. These values compare reasonably well with corresponding ones 1:3; 2:4, and 3:6
in (36) (albeit for the case h=R! 0).

We conclude this section mentioning that the calculations in Sections 2.5.2–2.5.4 show that when
h=rn � 1, the mapping from T sub

h
to T c

h
is invertible triangle-wise. Guaranteeing success of the

meshing algorithm, even with h=rn � 1, additionally requires showing that this transformation is
globally invertible which we have not included here. It entails demonstrating that distinct triangles
in T c

h
do not overlap.

The general case where h=rn is small but finite necessarily requires more detailed calculations.
An important step to this end is showing that � W �h ! � is a homeomorphism onto � . For then, we
know that positive edges are mapped to non-degenerate and non-overlapping ones that interpolate
the boundary. We proved this result in [41] where we also computed bounds for the Jacobian of
this mapping and estimated the mesh size required near the boundary. These calculations serve as
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a point of departure to guarantee the success of the meshing algorithm and to identify the requisite
restrictions on the mesh size.

3. REMARKS ON IMPLEMENTATION

We discuss a few details relevant to practical implementations of the meshing algorithm. Included
also is a simple vertex perturbation step that alters the collection of positively cut triangles and
positive edges to improve the quality of triangles along the boundary in the conforming mesh.

3.1. Identifying vertices in �

Identifying positive edges in the background mesh requires examining which vertices lie inside the
domain and which ones lie outside, i.e., computing s at the vertices. This is simplest when � is
represented implicitly, say as � WD ¹x 2 R2 W ‰.x/ < 0º. For then, a vertex v lies in � if and
only if ‰.v/ < 0. When such a level set function ‰ is not known a priori, we choose it to be the
signed distance function � itself. Note that it suffices to compute s (and hence �) at vertices that
are close to the boundary— just the ones in its Rr -neighborhood. Such vertices can be conveniently
identified using local bounding boxes around the boundary.

3.2. Closest point projection

Mapping vertices of positive edges onto � requires computing the closest point projection � there.
For C 2-regular domains, [38, Theorem 1.5] shows that � and � at a point x sufficiently close to the
boundary, namely in B.�; rn/, are related as

�.x/ D x � �.x/r�.x/: (37)

Once � and its gradient are known, (37) then shows how to compute � . Since positive edges are
by definition within a distance h from the boundary, relation (37) can be used to evaluate � if the
background mesh is sufficiently refined close to the boundary. We refer to [39, Appendix A] for a
discussion on computing � and � when � is represented either implicitly or parametrically.

3.3. Tolerances and round-off

While identifying which vertices lie inside the domain and which ones lie outside, the effect of
tolerances and round-off is perhaps unavoidable. As a result, a vertex in � may be (mis)identified
as one in R2 n � and vice versa. The effect of tolerances can be understood as introducing small
perturbations in the boundary. Incorrectly identifying vertices in � will change the collection of
positively cut triangles, positive edges, and hence the resulting mesh for �. However, the resulting
mesh will be valid provided the assumptions discussed in Section 2.5 are satisfied. In particular,
if triangles in the vicinity of the � are all acute-angled, the choice of tolerances and the effect of
round-off errors is not critical. The resulting mesh may depend on their choices but will be valid
nonetheless.

3.4. Background meshes

The polygon triangulated by the background mesh is quite arbitrary; it only needs to contain �.
Bearing this in mind, the restrictions on the background mesh discussed in Section 2.5, namely that
its triangles near � be sufficiently refined and that specific angles be acute, are hence easy to satisfy.
A simple way to satisfy the latter is to ensure that triangles in the vicinity of � are all acute-angled.
Or even adopt a background mesh of all acute-angled triangles. For instance, use a mesh of all
equilateral triangles as done in the example in Figure 2.

In practice, it is desirable that the background mesh be adaptively refined depending on the
geometric features of the boundary and the solution being approximated. Adaptively refined
quadtrees are a convenient way to construct such meshes. Angles in stencils designed by Bern et al.
in [42] lie between 36ı and 80ı. Hence, the resulting background meshes automatically satisfy
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Figure 5. Example showing the construction of an adaptively refined background mesh of acute-angled
triangles using quadtrees. In Section 6, we consider the problem of a flow driven by a propeller. Simulating
the problem requires a background mesh that is refined along the trajectory of the propeller tips. Following
[42], we construct such a mesh by creating an adaptively refined quadtree. Cells in such a tree are then tiled
with stencils of strictly acute-angled triangles; the angle requirements in the meshing algorithm are hence

automatically satisfied. The resulting mesh is shown in Figure 12.

the angle requirements for the success of the meshing algorithm. The background mesh shown
in Figure 12 was constructed in this way, and the steps involved are depicted in Figure 5; more
examples of background meshes constructed from adaptively refined quadtrees can be found in [39].

3.5. Altering the collection of positively cut triangles

When the background mesh Th is sufficiently refined near � , triangles with all three vertices in �
undergo only small perturbations and hence their quality is not expected to deteriorate significantly.
Triangles with exactly one or exactly two vertices in� can however be subject to large perturbations.
In Sections 2.5.3 and 2.5.4, we showed that these triangles remain non-degenerate and have bounded
quality for the special case h=rn ! 0; similar calculations will show that these conclusions hold
for small but finite values of h=rn as well. It is still possible that the qualities of these triangles are
not as good as desired. In the following, we briefly describe a simple, heuristic vertex perturbation
strategy that (possibly) alters the collection of positively cut triangles to improve the quality of their
images in the conforming mesh.

Consider a positively cut triangleK in Th with vertices ¹a; b; cº ordered such that �.a/ > �.b/ >
�.c/. Hence, the edge joining a and b is the positive edge of K and b is its proximal vertex. Let �
be a parameter chosen such that 0 6 �� 1. The suggested perturbation consists in relocating c to
�.c/ if �.b/� �.c/ < �hK . When c is snapped to its closest point on the boundary, K is no longer
positively cut. It is necessary to apply these perturbations iteratively because each such perturbation
alters the set of positively cut triangles.

The rationale behind the perturbation step is illustrated with an example in Figure 6. In the figure,
triangles K3 � K6 are positively cut by the boundary � , which for simplicity has been depicted as
being locally straight. Notice that the positive edges in trianglesK3 andK5 are mapped to relatively
short edges. As a result, the qualities of the images OK3 and OK5 of K3 and K5 respectively, although
bounded, could be unsatisfactory.

When vertex v6 is snapped to its closest point on the boundary, the collection of positively cut
triangles is altered. Triangles K8 and K10 are now positively cut, while K3 and K5 are not. In fact,
K3 and K5 are no longer included in the conforming mesh. Table IIb shows the improvement in
the quality of meshes for the domain in Figure 2 when these suggested perturbations are included.
In many of the examples we have tried, we found that such perturbations yield meshes with better
quality triangles along the boundary. A detailed analysis is however required to determine whether
we can guarantee such improvement, to identify conditions on � required to this end, and to estimate
the number of iterations required.

We conclude this discussion mentioning that mesh smoothing algorithms can be used to further
improve the mesh quality [44, 45]. Figure 7 demonstrates how mesh smoothing improves the quali-
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Figure 6. By selectively perturbing vertices in the background mesh, we alter the collection of positively cut
triangles to improve the quality of triangles produced by the meshing algorithm. The example here shows
that positively cut triangles can become sliver shaped when both vertices of positive edges project to nearby
points on the boundary. The acute conditioning angle assumption then implies that in such triangles, the
proximal vertex and the vertex inside the domain are both close to � . Triangles OK3 and OK5 in the mesh on
the top right are sliver shaped; the criterion �.v5/��.v6/� hK3 and �.v7/��.v6/� hK5 , respectively,
helps identify these cases. When v6 is snapped to its closest point on � , K3 andK5 are no longer positively

cut and the quality of the resulting mesh shown at the bottom right is improved.

Figure 7. Example demonstrating the idea of using mesh smoothing to further improve the quality of triangu-
lations resulting from our meshing algorithm. Figure (a) shows the triangulation determined by the meshing
algorithm for the example discussed in Section 2.3 using the coarsest background mesh Th mentioned there
and in Tables I and IIa. Its quality is improved in Figure (b) using a mesh smoothing algorithm [43]. To
provide a fair comparison, we designed the smoothing operations to be such that they adjust precisely the
same set of vertices that were perturbed in the meshing algorithm. Table (c) summarizes the improvement in
quality metrics that results from smoothing the meshes determined by the meshing algorithm. We have not

used such smoothing in any of the numerical examples presented subsequently.
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ties of meshes in the example discussed previously in Section 2.3. Specific details of the smoothing
algorithm can be found in [43]. The purpose of the example in Figure 7 is only to convey that our
meshing algorithm determines a mesh of reasonable quality that serves as a point of departure for
mesh smoothing methods, irrespective of the specific one adopted. We have not used any smoothing
in any of the examples that follow.

4. CURVILINEAR TRIANGULATIONS

Curvilinear discretizations provide high-order accurate approximations for curved domains, com-
pared to the polygonal ones that result from the meshing algorithm in Section 2. Curved finite
elements constructed using such discretizations are indispensable for optimal accuracy with high-
order interpolations. In this section, we are concerned with constructing curvilinear triangulations
for C 2-regular domains by transforming straight-edged triangles of a nonconforming background
mesh. Constructing such mappings from straight to curved triangles, even with a conforming mesh,
is a delicate task because there are two conflicting requirements. The resulting curved triangle should
approximate the domain well. Yet, it should be a sufficiently small perturbation of the straight one if
interpolation error estimates on the latter are expected to translate into optimal ones over the curved
triangle [46]. In the following, we discuss such mappings that generalize the ones in [47, 48].

Curvilinear triangulations broadly fall into two categories. In the first kind, curved triangles
conform exactly to the curved boundary. In the other, curved triangles approximate the domain suf-
ficiently well and are usually defined via isoparametric mappings. We discuss the former in Section
4.1 and the latter in Section 4.2. In both constructions, the positive edge in each positively cut tri-
angle is transformed into a curved one to conform/approximate the boundary; rest of the edges
remain straight.

4.1. Exactly conforming curved triangles

Defining a curvilinear mesh that conforms exactly to � requires only a subtle modification of the
meshing algorithm—instead of mapping vertices of positive edges onto � , we map positive edges
themselves onto � . Consider a positively cut triangle K with vertices ¹u; v;wº ordered such that
s.u/ > s.v/ > s.w/. Denote the barycentric coordinates of x 2 K by ¹�u; �v; �wº so that x D
�u u C �v v C �w w and �u C �v C �w D 1. The mapping that transforms K into a curvilinear
triangle conforming to � is given by

GKh .x/ WD
1

2.1 � �u/
Œ�v� .�u uC .1 � �u/ v/C �u�w�.u/�

C
1

2.1 � �v/
Œ�u� ..1 � �v/ uC �v v/C �v�w�.v/�

C �wMh.w/:

(38)

The dependence on x in (38) is implicit in the barycentric coordinates �u; �v , and �w . Over the
remaining triangles in T sub

h
, GK

h
is defined just as in the meshing algorithm, as x 7! �uMh.u/ C

�vMh.v/C �wMh.w/.
Let us examine the definition of GK

h
for a positively cut triangleK, see Figure 8. By the assumed

ordering for vertices, the edge uv joining vertices u and v is the positive edge of K. On this edge,
�w D 0 and �u C �v D 1. So

GKh .x 2 uv/ D
1

2
�..1 � �v/ uC �v v/C

1

2
�.�u uC .1 � �u/ v/ D �.x/: (39)

Hence GK
h

equals the closest point projection over the positive edge uv, showing that GK
h

maps
positive edges onto � as depicted in Figure 8. On the edge uw, �v D 0 and �u C �w D 1. Then
(38) reduces to

GKh .x 2 uw/ D
�u�w

2.1 � �u/
�.u/C

1

2
�.u/C �wMh.w/ D �u �.u/C �wMh.w/; (40)
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Figure 8. Mapping triangles from a background mesh into curvilinear ones that conform exactly to an
immersed boundary. The mapping GK

h
transforms positively cut triangles into curved ones (as shown on the

right), while the remaining triangles in T sub
h

are transformed affinely (as shown on the left).

Figure 9. Defining high-order curved finite elements by constructing mappings from the reference element
OK to the curved one Kc . The figure shows two such mappings. The one on the left maps OK to Kc via the

steps OK
AK
�! K

GK
h
�! Kc , while the second one on the right uses the meshing algorithm as an intermediate

step, following the sequence OK
AK
�! K

MK
h
�! Ks

G
Ks
h
�! Kc .

which is an affine map. Similarly,

GKh .x 2 vw/ D �v �.v/C �wMh.w/: (41)

Equations (39), (40), and (41) show that GK
h

for a positively cut triangleK can be interpreted as the
extension to K of a map that equals � on its positive edge and that is affine on the remaining two
edges. This point of view is adopted in [47, 49] as well. For this reason, mappings such as GK

h
are

also commonly termed as blending maps and transfinite interpolations.
An alternative way of mapping positively cut triangles to curved ones uses the meshing algorithm

as an intermediate step. In such a construction, the domain � is first meshed using the algorithm in
Section 2, and the resulting mesh then transformed into one that conforms to � . More precisely, with

MK
h .x/ WD �u.x/Mh.u/C �v.x/Mh.v/C �w.x/Mh.w/;

and Ks DMK
h
.K/, the mapping over triangles in T sub

h

QGKh D

´
G
Ks
h
ıMK

h
if K is positively cut;

MK
h

otherwise
(42)

maps triangles in T sub
h

to a curvilinear mesh that conforms exactly to�. Of course, QGK
h

differs from
GK
h

only for positively cut triangles, see Figure 9. In these triangles,
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(i) QGK
h

first mapsK to a conforming triangleKs and then transformsKs to a curved triangle, and
(ii) even though GK

h
.K/ D QGK

h
.K/ as sets in R2, QGK

h
¤ GK

h
in general. The two will however

be close in a pointwise sense.

4.2. Isoparametric mappings

Isoparametric mappings provide a convenient way of approximating curved domains with desired
accuracy. To facilitate discussing isoparametric mappings, introduce the reference triangle OK � R2

and the finite element triplet . OK; ON k; OPk/. As usual, OPk is the set of polynomials over OK of degree
at most k and ON k D ¹ ONaºa is the set of shape functions that constitute a basis for OPk . Associated
with ON k are the nodes ¹ Óaºa 2 OK which are such that ONa. Ób/ D ıab . Define the interpolation
operator O…k W f 2 ŒC 0. OK/�2 !

P
a f . Óa/Na. Finally, let AK W OK ! K be an affine map from OK

to K and denote ´a D AK. Óa/.
A systematic definition of isoparametric mappings results naturally from interpolating GK

h
ı AK

or QGK
h
ı AK at selected points. With the notation introduced earlier, the isoparametric map over

OK 2 T sub
h

defined by interpolating the former is given by

IKh WD
O…k
�
GKh ı AK

�
D
X
a

GKh .´a/
ONa: (43)

Interpolating QGK
h
ı AK instead yields a different map

QIKh WD
O…k
�
QGKh ı AK

�
D
X
a

QGKs
h

�
MK
h .´a/

�
ONa: (44)

For triangles in T sub
h

that are not positively cut, IK
h

, QIK
h

, GK
h
ıAK , and QGK

h
ıAK are all equal (and

affine). In positively cut triangles, IK
h

and QIK
h

map positive edges to curved ones that interpolate
the boundary at a few points. Figure 10 depicts this for case of a quadratic element (k D 2). It
also shows that IK

h
¤ QIK

h
in general. For instance, IK

h
. Ó4/ D �..´1 C ´2/=2/ while QIK

h
. Ó4/ D

�..�.´1/C �.´2//=2/. Nonetheless, the two maps will be close for small mesh sizes.
We highlight a few differences between the mapping to curved elements in Section 4.1 and the

isoparametric mappings defined here. As pointed out previously, the curved boundary resulting from
the former conform to � exactly while the curved boundary defined by isoparametric maps can only
be expected to interpolate � . This could be significant in problems/numerical schemes where retain-
ing the smoothness of the boundary is critical, see Section 5.2 for an example. Isoparametric maps
are of course polynomials over coordinates in OK (or K). As defined in (42) and (43), they require
fewer evaluations of � in general. Once � is computed at the vertices of the positive edge, defining
IK
h

or QIK
h

requires evaluating � at most twice per node in the element. In contrast, computing GK
h

or OGK
h

requires two evaluations per quadrature point in the conforming curved element. Further-
more, computing derivatives of shape functions in the isoparametric element do not entail computing

Figure 10. Isoparametric mappings for positively cut triangles in the background mesh. The reference
quadratic element is shown in (a). The isoparametric maps constructed by interpolating the mappings
GK
h
ı AK and QGK

h
ı AK are shown in (a) and (b). The curved boundary of the element interpolates the

boundary at the points where the nodes Ó1; Ó2, and Ó4 are mapped. Notice that the mid-side node Ó4 is
generally mapped differently by GK

h
and QGK

h
.
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derivatives of � ; in the conforming curved element however, derivatives of shape functions depend
on rGK

h

�
or r QGK

h

�
, which in turn depend on r� .

5. APPLICATION: HIGH-ORDER CURVED FINITE ELEMENTS

The mappings from straight to curvilinear triangles facilitate a natural construction of curved
Lagrange finite elements. The idea behind the construction is illustrated in Figure 9. Following
the notation introduced earlier, the curved finite element corresponding to K derived from the ref-
erence triplet . OK; ON k; OPk/ is denoted by .Kc ; N k; P k/. The curved triangle Kc can be defined
using any one of the maps GK

h
; QGk

h
; I k
h

or QI k
h

; for definiteness, we pick the first one. Hence,
Kc D G

K
h
.K/ D GK

h
.AK. OK// and

P k D
°
Op ı A�1K ı

�
GKh

��1
W Op 2 OPk

±
: (45)

In particular, shape functions ¹Naºa over Kc are defined by the relation Na ı GKh ı AK D
ONa.

Nodes ¹´caºa in the curved element are located at ´ca D G
K
h
.AK. Óa//. Hereafter, the set ¹ Óaºa will

be chosen such that the finite element functions over � are in C 0.�/.
We demonstrate optimal convergence using the curved finite elements described above with a

numerical example. Although the given construction for curved elements is a standard one, the
example helps show that the mapping GK

h
in (38) satisfies the conditions in [46] for optimal inter-

polation estimates. For brevity sake, we do not include similar examples using the maps QGK
h
; IK
h

, or
QIK
h

instead of GK
h

but mention that optimal convergence rates would be observed with these maps
as well.

We consider the model problem

�u D 0 in � D ¹r D
p
x2 C y2 < 1º; (46a)

u D ey sin x on @�: (46b)

The solution to (46) is the smooth function u.x; y/ D ey sin x. The weak form of (46) is to find
u 2 H 1

@
WD ¹v 2 H 1.�/ W v

ˇ̌
@�
D ey sin xº such that

Z
�

ru � rv d� D 0 8v 2 H 1
0 .�/: (47)

To compute finite element approximations uh of u, � is immersed in background meshes of
equilateral triangles. The coarsest background mesh has mesh size h0 D 5=16. Table IV shows the
convergence of the solution computed with standard Lagrange elements (over OK), as the background
mesh is refined (h-refinement). The convergence is illustrated graphically in Figure 11. Dirichlet
boundary conditions were imposed by interpolating the prescribed function in (46b) at the nodes of
curved elements lying on the boundary. We used sufficiently accurate quadrature rules to evaluate
the stiffness matrix, see Section 5.1. The convergence rates in the L2.�/ and H 1.�/ norms are
optimal for linear, quadratic, cubic, and quartic elements (k D 1; 2; 3, and 4, respectively).

Table 11 also reveals that for a given background mesh, the error in the finite element solution
decreases with the element order k. This demonstrates that the curved elements are well suited
for p-refinement—progressively accurate solutions can be computed by just increasing the element
order while using the same background mesh. Moreover, the data in the table show that the error is
O.hkC1/, which is optimal in the element order k for each given (sufficiently small) mesh size h of
the background mesh.
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Table IV. Convergence of the error of the finite element solutions uh computed using exactly conforming
curved elements for problem (46). Table IVa reports ku� uhk0, the L2.�/-norm of the error eh D u� uh.
The rate of convergence with mesh size is defined as the exponentm in expression kehk0 D Chm, where the
constant C is independent of h. We calculate a rate for each pair of solutions computed with a background
mesh and its refinement; hence the rate calculated from the solutions computed using background meshes
Th and Th=2 is .log2 kehk0 � log2 keh=2k0/. Table IVb reports analogous optimal convergence of the error
in the H1.�/-seminorm. We see that convergence rates for linear, quadratic, cubic, and quartic elements are
optimal both in the L2.�/ andH1.�/ norms. Figure 11 presents the data in these tables in graphical format.

Figure 11. Graphical illustration of the optimal convergence of the finite element solution uh to the exact
one for the problem (46). Figures 11a and 11b show convergence of the L2.�/-norm andH1.�/-seminorm
respectively, of the error in the finite element solution as the background mesh is refined. The rates of

convergence are optimal in both norms for linear, quadratic, cubic, and quartic elements.

5.1. Quadrature for curved elements

For optimal convergence and accuracy of numerical solutions computed using curved elements,
we naturally require sufficiently accurate quadrature rules for integration over curvilinear domains.
Following standard practice, these quadrature rules need only be defined over the reference triangle,
because integrals over a curved elementKc can be performed over OK using the correspondence pro-
vided by the mappings to Kc

�
any one of GK

h
; QGK

h
; IK
h
; QIK
h

�
. We adopted for curved elements the
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same quadrature rules needed for straight elements, as explained in [50]. For example, a three-point
quadrature rule that exactly integrates quadratic polynomials over the reference element suffices for
isoparametric quadratic elements. We have used such integration rules in all of our examples, includ-
ing the ones with exactly conforming curved elements. These examples suggest that the quadrature
rules for straight elements are also enough to obtain optimal convergence rates with exactly curved
elements. We also note that more generally, different rules can be used for integrating each term in
the weak form of a problem, for instance the mass and stiffness matrices, and the force vector.

5.2. Circular plate in bending

We consider the problem of a thick, circular, elastic plate bending under the action of a uniform
external load from [36]. This example helps emphasize the distinction between representing a curved
boundary exactly using exactly conforming curved elements and approximating it with isopara-
metric elements as defined earlier. Consider a Cartesian coordinate system .x; y; ´/ with basis
¹ex ; ey ; e´º. The domain of the problem is the set � � .�	=2; 	=2/, where � is a circle of radius
R D 3:142 centered at the origin and contained in the plane of ex; ey , and 	 is the thickness along
e´. We assume that the displacement field u of the plate is of the form

u.x; y; ´/ D �´
�
#x.x; y/ex C #y.x; y/ey

�
C w.x; y/e´; (48)

which corresponds to the Reissner–Mindlin model for a thick plate in bending, see [36, 51]. In
(48), w is the transverse displacement of points in the mid-plane �, while #x and #y represent the
infinitesimal rotations of fibers normal to the mid-plane about the axes ey and ex , respectively. We
consider a ‘soft-simple support’ for the plate, which implies the boundary conditions

w D 0

# � T D 0

³
on @� (49)

where T is the unit tangent to @� and # D .#x ; #y/. The plate is loaded by a constant force 2p per
unit area normal to its top face � � ¹	=2º. The elasticity problem is then to find

u 2
®
�´# C w e´ W # 2 H

1
T ; w 2 H

1
0 .�/

¯
;

where H 1
T .�/ WD ¹# 2 ŒH

1.�/�2 W # � T D 0 on @�º;

which minimizes the strain energy functional

I Œu� D
1

2

Z
��.��=2;�=2/

®
�Œtr.".u//�2 C 2
 ".u/ W ".u/

¯
�

Z
�

p w; (50)

where �;
 are material parameters called Lamé constants and ".u/ D .ruCruT /=2 is the usual
infinitesimal strain tensor. Introducing assumption (48) in (50) and integrating along the thickness
reduces (50) to a problem over �: find .#;w/ 2 H 1

T .�/ �H
1
0 .�/ that minimizes the functional

F Œ.#;w/� D
1

2

Z
�

°
� Œtr .".#//�2 C 2
 ".#/ W ".#/

±
C
6


	2

Z
�

k# � rwk2 �
12

	3

Z
�

pw:

(51)

We compare the transverse displacements at the center of the plate as the background mesh for�
is refined while using curved quadratic elements. We pick � D 
 D 1; 	 D R=4 for the plate and
p D 1 � 10�3 for the loading. The constraint (49) is imposed at the nodes that lie on @�. Hence
with the notation used in Figure 10, (49) is imposed at nodes ´1; ´2, and ´4 in each curved quadratic
element. We take as a reference value w0 D 5:3407075� 10�2, computed with exactly conforming
curved quartic elements and a refined background mesh of equilateral triangles. Table V lists the

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 98:236–264
DOI: 10.1002/nme



UNIVERSAL MESHES 257

Table V. Transverse displacements at the center of the circular plate � computed with curved
quadratic elements. The reference value is w0 D 5:3407075 � 10�2. The columns titled
‘conforming’ and ‘isoparametric’ list the values computed with exactly conforming elements and
isoparametric elements, respectively. The column ‘modified isoparametric’ contains the values com-
puted with isoparametric elements but while imposing the constraint # � T D 0 using one of the two
possible tangents T at vertices on the curved edges of the element. The coarsest mesh size of the

background mesh is h0 ' 0:28R.

displacements computed with exactly conforming quadratic elements (Kc D GK
h
.K/; k D 2) and

with isoparametric quadratic elements (Kc D IKh .
OK/; k D 2).

From the table, we see that the displacements computed with the conforming elements converge
to w0. But somewhat surprisingly, those computed with quadratic isoparametric elements fail to
even come close to w0. This is a consequence of enforcing the constraint on rotations in (49) on
the approximate curved boundary realized with isoparametric elements. The unit tangent to this
boundary fails to be continuous at vertices that lie on it. Consequently, rotations equal zero at each
vertex on the boundary. With exactly conforming curved elements, @� is represented exactly and
this issue is avoided.

The above discussion shows that the constraint in (49) needs to be enforced differently while
using isoparametric elements. For instance, we could select one of the tangents at each vertex on
the approximate boundary to enforce the constraint # � T D 0. The displacements computed with
quadratic isoparametric elements by enforcing the constraint in this way are listed under the column
title ‘modified isoparametric’ in Table V. These values are clearly more accurate and converge
to w0.

We conclude this example mentioning that we have used the same finite element spaces for both
transverse displacements (w) and rotations (#x; #y) in the aforementioned calculations. It is well
known that for thin plates (	 � R), such a choice of spaces in the Reissner–Mindlin model results
in locking [51]. To avoid adopting very small mesh sizes for accuracy, we deliberately chose a large
thickness 	 D R=4 in the example.

6. BACKGROUND MESHES AS UNIVERSAL MESHES

An important advantage of admitting nonconforming background meshes is found in problems with
evolving domains. For then, it is possible at least in principle, to use the same background mesh to
triangulate a changing domain. If not for the entire duration of interest, at least for reasonably large
changes in the immersed geometry. This motivates the notion of universal meshes.

6.1. Universal meshes

Consider simulating a problem in which rigid blades physically mix fluid in a closed container. As
the blades rotate, the region of the container occupied by the fluid changes. With the algorithm in
Section 2, we can now discretize the evolving fluid domain by merely perturbing vertices of the
same background mesh shown in Figure 12. Precisely because the same background mesh is utilized
for all positions of the propeller, we term it a universal mesh for the fluid.

More generally speaking, given a triangulation Th, let D.Th/ denote the class of all domains that
can be meshed with the algorithm in Section 2 using Th as a background mesh. We say that Th is a
universal mesh for domains in D.Th/. The utility of this concept lies in the fact that if ¹�tºt is the
time evolution of a domain �0 2 D.Th/, then often ¹�t W 0 6 t 6 	º � D.Th/ for a reasonably
large time 	 > 0. As the domain develops small features or undergoes topological changes, it may
no longer belong to D.Th/.
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Figure 12. Example to illustrate the notion of a universal mesh. A three-blade propeller rotates about an
axis perpendicular to its plane and passing through its center. It is immersed in a refined background mesh
of acute-angled triangles. Using this background mesh in the meshing algorithm in Section 2.2 yields a
conforming mesh for each orientation of the propeller; a few are shown in Figure 13. Such a background

mesh is hence termed a universal mesh for the domain of the propeller.

Figure 12 illustrates this idea for the example with a rotating propeller. The domain shown in
the figure is a three-blade propeller that rotates about an axis perpendicular to its plane and passing
through the center. The background mesh in the figure consists of only acute-angled triangles. It is
refined at the center and along the tips of the blades to resolve the larger curvatures there. This mesh
yields a discretization conforming to the fluid for every orientation of the propeller; it is therefore
a universal mesh for the fluid. Since the background mesh is quite refined, we show conforming
meshes for the propeller in Figure 13 in place of meshes for the fluid. Figure 14 shows the triangles
near the propeller boundary in conforming meshes for the fluid for a couple of different orientations
of the propeller.

An important question in practice is knowing when � belongs to D.Th/. Precisely characteriz-
ing D.Th/ is presumably very difficult. The results in Section 2.5 are useful toward this end. By
identifying sufficient conditions for a domain to belong to D.Th/, these results enable verifying the
inclusion of a certain family of domains in D.Th/. Improving on these conditions, by way of relax-
ing the assumption on angles and tightening the bound on the required mesh size, will help identify
a larger family of domains in D.Th/.

Next, we present a couple of applications of universal meshes using the curved elements described
in Section 4.1. In the first example, we consider the flow of a Stokes fluid through a square-shaped
channel having a propeller rotating with fixed angular velocity. In the second, we consider a similar
setup in which the fluid interacts with a rigid circular obstacle that is tethered by a spring to the
container wall but otherwise free to move within the container. Both examples effectively reduce to
computing solutions to the Stokes equations over a sequence of (changing) domains and boundary
conditions. These domains are robustly and exactly discretized with the same background mesh that
serves as their universal mesh.

6.2. Application: flow with a rotating component

First, we consider the example of a propeller mixing fluid. The problem setup is essentially the one
illustrated in Figure 12. The propeller P is assumed to be rigid and impermeable. It rotates with
constant angular velocity ! about an axis passing through its center and perpendicular to its plane.
The fluid in the container is incompressible and has viscosity 
. Its kinematics is governed by the
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Figure 13. Conforming meshes for a few different orientations of a propeller-shaped domain determined by
the meshing algorithm using the same background mesh shown in Figure 12.

familiar equations for Stokes flow,


 div .rut / D rpt ; (52a)

div .ut / D 0; (52b)

relating the flow velocity ut and pressure pt at time t . Let ¹ex; eyº and ¹er ; e�º denote Cartesian
and polar coordinate systems with origin at the center of the container of size L D 1:4. Inflow and
outflow boundary conditions along its walls are specified as

ut D

´
0 if jyj D L=2;

.L � 2jyj/ ex if x D 0;L
(53)
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Figure 14. Simulating the problem of a Stokes flow in a channel with a propeller. At each instant, the same
background mesh is used to determine a curvilinear mesh that conforms exactly to the fluid domain. Figures
(a) and (b) show elements close to the propeller in the resulting mesh at two distinct times. Streamlines of
the flow and contours of the velocity magnitude corresponding to the propeller orientation in (a) and angular

velocity ! D �2 are shown in (c). Contours of pressure at the same instant are shown in (d).

while no-slip along the boundary of the propeller implies

ut D r!e� on @Pt ; (54)

where Pt is the domain of the propeller at time t and ! is its prescribed constant angular velocity.
Since (52), (53), and (54) determine the pressure only up to a constant, pt is assigned to be zero at
one point in the flow domain, i.e., we set pt D 0 at x0 2 B n Pt .

A triangulation of B , similar to the one shown in Figure 12, serves as the universal mesh for
the fluid domain B n Pt . The mesh is refined further near the tips of the blades to resolve features
of the flow there. We adopt (curved) Taylor–Hood elements for the finite element solution of (52),
i.e., the element .Kc ; N 2; P 2/ for the velocity ut and .Kc ; N 1; P 1/ for the pressure pt . See [52]
for a discussion on the Taylor–Hood element and for the weak form of this problem, which we
have omitted here. Dirichlet boundary conditions are imposed by interpolating (53) and (54) at the
nodes lying on the boundary. Figures 14a and 14b show the curvilinear mesh conforming to the fluid
domain at two different time instants. Since the mesh is quite refined, only the elements near the
propeller are shown. Figures 14c and 14d show contours of the velocity magnitude, streamlines for
the flow and the pressure computed with 
 D 0:01 and ! D �2 at the propeller orientation shown
in Figure 14a.
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6.3. Application: flow interaction with a rigid disc

In the second example, we consider the interaction between a fluid and a rigid solid. The problem is
to determine the trajectory of a rigid discD of radiusR and massm immersed in an incompressible,
viscous fluid flowing through a square-shaped channelB of sideL. The disc is attached to the origin
O located at the mid-point of the left end of the channel by a linear spring with spring constant k
and equilibrium length `0. The problem setup is shown in Figure 15.

We assume that the kinematics of the fluid is governed by the equations for Stokes flow given in
(52), retaining the notation introduced there. In a Cartesian coordinate system centered at O , inflow
and outflow boundary conditions are prescribed at the two ends of the flow channel as

ut D .L � 2jyj/ex if x D 0;L: (55)

Denote the position of the center of the disc at time t by c.t/ and the disc centered at c.t/ by Dt .
No-slip boundary conditions along the horizontal walls of the channel and along the boundary of
the disc imply

ut D

²
0 if jyj D L=2;
Pc.t/ on @Dt :

(56)

Force balance for the disc is given by

m Rc D k

�
1 �

`0

jcj

�
c C

Z
@Dt

� f � nt ds; (57)

where nt is the unit outward normal to @Dt and the stress � f in the fluid is computed as

� f D �pt I C 

�
rut Cru

T
t

�
:

Balance equations (52), (57), boundary conditions (55), (56), initial conditions c.0/ D c0, Pc.0/ D 0,
and pt .x0 2 B n Dt / D 0 together constitute a coupled system of equations for the unknowns
.ut ; pt / and c.t/. We use (curved) Taylor–Hood elements for the flow solution as before and adopt
a staggered time integration scheme. At each time instant tn, given the center of the disc cn and its
velocity Pcn, we define curvilinear elements for the flow variables over B nDt . We then compute the
flow solution .uhn; p

h
n/ at this time. The net force on the disc is evaluated using (57). Using central

differences, we update the position and velocity of the disc to the next instant tnC1 and repeat the
process.

The background mesh shown in Figure 15a serves as a universal mesh for the flow domainBnDt .
Figure 15b shows the trajectory determined for the disc and its final configuration computed with
parameters L D 1 for the container, 
 D 0:01 for the fluid, R D L=10;m D 1 for the disc,

Figure 15. Initial setup for the problem of a rigid disc D interacting with an incompressible fluid is shown
on the left. The disc is attached to the origin by a linear spring. Inflow and outflow boundary conditions for
the flow through the channel B are indicated. A simple, unstructured mesh over B serves as the universal
mesh for the fluid for the entire duration of the simulation. Figure (b) shows the trajectory computed for the

disc as it moves from its initial position to an (approximate) equilibrium position.
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Figure 16. Conforming mesh for the fluid domain at an intermediate position of the disc (prior to reaching
equilibrium) in the simulation discussed in Section 6.3 is shown on the left. Notice the curved edges along
the boundary of the disc. Figure (b) shows the contours of the horizontal component of the velocity and the

streamlines of the flow at the same instant.

k D 1; `0 D L=4 for the spring, c0 D .0; L=4/ for the initial position of the disc, and a time step
�t D 0:05. At an intermediate position of the disc, contours of the horizontal component of the
flow velocity along with a few streamlines are shown in Figure 16. The trajectory of the disc plotted
in Figure 15b shows that the disc eventually settles to an equilibrium position balancing the forces
exerted by the fluid and the spring.

We refer the reader to [5, 21, 30, 53] for alternative methods to simulate such problems with
changing flow domains.

7. CONCLUDING REMARKS

The meshing algorithm, the mappings to curvilinear triangles for constructing high-order curved
finite elements, and the idea of universal meshes are useful tools for an important class of computa-
tionally challenging problems. By employing them in problems with evolving fluid domains while
using a single background mesh, we demonstrated the algorithmic advantages they offer. We envi-
sion their application to a variety of problems with evolving domains, such as crack propagation,
phase transformation, and complex fluid-structure interactions.

Important questions remain for these tools to also be useful in realistic engineering applications. A
significant one is knowing the refinement required for the background mesh given a curved domain.
Precise and computable estimates are valuable because they can help determine if and when a back-
ground(universal) mesh needs to be changed during the course of simulating an evolving domain.
The analysis in [41] will be useful in determining such bounds.

A second challenge lies in relaxing the regularity required on domains, which currently stems
from choosing the closest point projection to parameterize the boundary. Both the problem as well
as the numerical scheme chosen to approximate its solution can result in domains with corners,
cracks, and interfaces. To handle such domains, additional restrictions may have to be imposed on
the background mesh. An important step in this direction is parameterizing immersed curves with
end points and corners. We have shown how to do this in [39].

In Section 1, we mentioned arbitrary Lagrangian–Eulerian methods that prescribe a motion for
vertices in meshes, and their difficulty with mesh distortion resulting from large motions of moving
domains. Immersing moving domains in a universal mesh introduces different challenges, arising
from the fact that a continuous motion of the boundary may not induce a continuous motion for its
vertices. It is however conceivable that the two methods can in fact complement each other.

We think the ideas introduced here can be extended to meshing three-dimensional domains
immersed in background meshes of tetrahedral meshes. An analysis will reveal the necessary
requirements on the background mesh.
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