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SUMMARY

We formulate a class of delicately controlled problems to model the kink-free evolution of quasistatic
cracks in brittle, isotropic, linearly elastic materials in two dimensions. The evolving crack satisfies famil-
iar principles—Griffith’s criterion, local symmetry, and irreversibility. A novel feature of the formulation is
that in addition to the crack path, the loading is also treated as an unknown. Specifically, a scaling factor
for prescribed Dirichlet and Neumann boundary conditions is computed as part of the solution to yield an
always-propagating and ostensibly kink-free crack and a continuous loading history beyond the initial step.
A dimensionless statement of the problem depends only on the Poisson’s ratio of a homogeneous material,
and is in particular, independent of its Young’s modulus and fracture toughness.

Numerical resolution of the formulated problem relies on two new ideas. The first is an algorithm to
compute triangulations conforming to cracked domains by locally deforming a given background mesh in
the vicinity of evolving cracks. The algorithm is robust under mild assumptions on the sizes and angles of
triangles near the crack and its smoothness. Hence, a subset, if not the entire family, of cracked domains
realized during the course of a simulation can be discretized with the same background mesh; we term
the latter a universal mesh for such a family of domains. Universal meshes facilitate adopting a discrete
representation for the crack (as splines in our examples), preclude the need for local splitting/retriangulation
operations, liberate the crack from following directions prescribed by the mesh, and enable the adoption of
standard FEMs to compute the elastic fields in the cracked solid. Second, we employ a method specifically
designed to approximate the stress intensity factors for curvilinear cracks. We examine the performance of
the resulting numerical method with detailed examples, including comparisons with an exact solution of a
crack propagating along a circular arc (which we construct) and comparisons with experimental fracture
paths. In all cases, we observe convergence of computed paths, their derivatives, and loading histories with
refinement of the universal mesh. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational fracture mechanics play an essential role in applications ranging from the design and
reliability analysis of devices and structures to the modeling of hydrocarbon recovery strategies such
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as hydraulic fracturing. It encompasses the prediction of the onset, propagation, and arrest of cracks
and/or catastrophic failure. Once cracks have emerged, the accurate prediction of crack propaga-
tion is founded upon two pillars: (1) a fracture propagation criterion corresponding to the material
of interest, which defines the crack evolution (modeling), and (2) an algorithm to approximate this
evolution, akin to integrating a system of ordinary differential equations, which in turn necessitates
accurate approximations to all fields required to evaluate this criterion (numerical approximation).
Accurate approximations of the stress field are always needed, but other fields may also be nec-
essary, such as the temperature field in the case of thermal cracking, the plastic deformation in
the case of ductile fracture, and the concentration of relevant chemical components in the case of
corrosion cracking.

Crack evolution algorithms have remained of low order for the most part, likely because of the
challenges involved in accurately computing the necessary fields as the crack evolves, and in per-
petually updating the spatial discretization for the evolving computational domain. Additionally,
higher-order algorithms to compute the crack evolution may require iterating over possible cracks,
a computationally costly step.

Several efficient methods to update the spatial discretization for domains with evolving cracks
have been proposed. Many of these methods can be classified on the basis of whether or not
basis functions interpolating the displacement field are constructed from a mesh that conforms to
the cracked domain. In both cases, evolving cracks are typically represented as curves made of
connected straight segments.

In the first approach, the domain with an evolving crack is remeshed with each update to the crack
path. By ensuring that the mesh for the domain always conforms to the crack path, any displacement
discontinuity along the crack is easily accommodated. At the same time, such methods demand
robust and fast remeshing algorithms. These algorithms typically involve local retriangulation near
the crack. Consequently, new elements may be added near the crack and existing ones deleted or cut
[1–3]. As an alternative to local retriangulation-based algorithms, r-adaptive procedures have also
been proposed in [4–7]. Related to the latter are finite element spaces with embedded discontinuities
[8, 9].

The second family of methods bypass the need for remeshing by constructing basis functions
over the uncracked domain and subsequently modifying them to accommodate the crack. Methods
in this category include meshless methods such as the element-free Galerkin method [10, 11], the
meshless local Petrov–Galerkin method [12, 13], and the enriched meshless method [14], as well
as mesh-based methods such as the strong discontinuity [15–17] and the extended FEM (XFEM)
[18, 19].

The XFEM is one of Ted Belytschko’s seminal contributions. It has swayed the field of com-
putational fracture mechanics in the last 15 years by inspiring a vast number of related methods,
and it has been adopted as a standard tool in some commercial and national security finite element
softwares. The XFEM enriches the space of discrete displacement fields with additional basis func-
tions in the vicinity of the crack. These enrichments may be combined with those added to account
for the singular stress field at the crack tip. Several variants of XFEM have been formulated to
improve shortcomings of the original method, and the list is simply too long to review here. The
salient feature of the XFEM, namely, the possibility of propagating cracks along arbitrary direc-
tions, has markedly ameliorated the dependence of the computed crack path on the choice of the
mesh. In contrast with methods that only allow for prescribed crack propagation directions, such as
solely along element faces (e.g., [20] for a cohesive element approach), the family of possibly dis-
crete cracks in XFEM can approximate any rectifiable crack and its length (2D) or area (3D). These
quantities are directly relevant to the computation of the surface energy of a crack in brittle fracture,
so this feature simplifies the approximation of the potential energy of any given cracked specimen.
The drawbacks of XFEMs and some related approaches include the addition of degrees of freedom
(DOFs), the cumbersome procedure for numerical integration over partial elements, and the possi-
bly ill-conditioned stiffness matrices due to arbitrarily small elements cut by the crack or near loss
of linear independence of the set of basis functions. Methods to alleviate such difficulties have been
developed, such as the integration schemes used by [21, 22], the use of only two enrichment basis
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Figure 1. An example to illustrate the idea of perturbing vertices in a nonconforming triangulation to con-
form it to an embedded crack. The mesh on the left does not conform to the crack. Nevertheless, moving
some of its vertices near the crack in a manner we prescribe yields the conforming mesh on the right. In the

process, no new vertices are introduced, and the connectivities of the two meshes are identical.

functions near the crack tip in two dimensions, and the requirement on the mesh that all nodes lie
either on the crack or a distance away from it [23].

Despite the vast amount of literature that addresses crack propagation problems, very few have
systematically studied the convergence of the crack path against analytic solutions (see [24] for the
case of a prescribed crack path). This is partly due to the insufficient understanding of what the
problem is and what constitutes a solution. In this regard, [25] and [26] aimed at establishing a
rigorous problem statement.

As a byproduct, methods based on a regularization of the fracture set have emerged [27–35].
Prominent among them are the so-called phase field methods. These methods represent sharp cracks
with a diffuse scalar field. Therefore, cracks nucleate, propagate, and bifurcate as an outcome of
this scalar field, which has a close physical meaning to the damage field in damage mechanics.
The computational cost of phase field methods is high, because a refined mesh is needed to resolve
the phase field. By construction, approaches adopting a diffuse representation for cracks lead to an
ambiguity in the definition of the crack path, which can be debilitating in applications where an
explicit representation is indispensable, such as in the study of hydraulic fracturing [36].

In this work, we regard cracks as sharp interfaces. We address the problem of updating the spatial
discretization as the crack evolves by extending to cracked domains an algorithm introduced in [37]
for triangulating smooth domains. The main idea behind it consists in perturbing vertices of a given
background triangulation so that the resulting mesh conforms to an embedded crack (Figure 1).
Specifically, we snap selected vertices of the background mesh to their closest point on the crack.
Additionally, we ‘relax’ vertices in a small neighborhood of the crack to accommodate such snap-
ping. Under conditions detailed in Section 4, it is possible to perturb the same background mesh to
yield meshes conforming to the family of cracks that appear and propagate as the loading proceeds,
at least for part of the evolution. If this is the case, we term the background mesh a universal mesh
for such family of cracked domains.

Perturbations of vertices in a universal mesh, described in detail in Section 4, are restricted to
a small neighborhood of the crack. Consequently, most triangles in the universal mesh remain
unaltered. Perhaps more significantly, vertices are neither added nor deleted, and connectivities of
triangles in the mesh are maintained. Hence, the sparsity of data structures (stiffness matrix) remains
the same as the crack propagates, except for changes resulting from the duplication of displacement
DOFs along the crack and from the possible addition and removal of enrichments.

These are all features shared with r-adaptive methods. Creating robust vertex perturbation-based
meshing algorithms has been a lingering challenge, because such perturbations are prone to result
in degenerate or inverted triangles, to yield tangled meshes, or to result in badly shaped triangles.
Although an analysis of the mesh motion strategy adopted for universal meshes is still outstand-
ing, the results shown here are encouraging, and numerous tests reveal that the method renders
meshes with high qualities as the crack evolves. Additionally, the results in [38] guarantee that edges
along crack faces do not become arbitrarily small as a result of the vertex perturbation strategy. This
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feature is especially desirable for problems in which a finite element space needs to be constructed
over the crack faces to approximate the solution of a PDE therein (e.g., hydraulic fractures).

To ensure success of the meshing algorithm, we have to impose restrictions on the background
mesh and on the geometry of the crack. Specifically, we request that the crack be twice continuously
differentiable .C 2/, that the background mesh be sufficiently refined in the vicinity of the crack, and
that certain angles in the triangles intersected by the crack be strictly acute. The rationale behind
these assumptions are discussed in Section 4. To maintain the desired regularity of the crack during
its evolution, we represent it by fitting cubic splines through the sequence of computed crack tip
positions. Alternative representations, for example, C 2-level set functions, could also be employed.

The aforementioned assumptions have some implications on the class of fracture mechanics
problems that can be simulated and on the numerical scheme adopted. Arguably, however, the
assumptions are not very restrictive. Because the crack is expected to be a C 2 curve, the algorithm
to deform the universal mesh is not yet able to robustly accommodate the mesh around a kink,
although it is likely that this restriction will be resolved in the near future. In the numerical exam-
ples shown here, kinks appear as soon as the crack begins to propagate, but the resulting crack is
approximated as a C 2 curve with a very high curvature therein. Bifurcations and crack intersections
embody similar issues as kinks and are therefore not yet considered here.

We take advantage of the algorithm to deform a universal mesh to formulate a method to com-
pute the propagation of quasistatic brittle cracks in two dimensions, evolving according to Griffith’s
criterion and the principle of local symmetry (PLS). To this end, we formulate a class of delicately
controlled problems in which the crack is always propagating. This control is achieved by appropri-
ately multiplying the boundary conditions by a scaling factor. The problem then is given a domain
with an initial crack, and boundary conditions that depend on the crack length, find both the crack
path and the scaling factor so that the crack is always propagating while satisfying the PLS. One
feature of this problem is that the solution does not depend on Young’s modulus or the toughness of
the material.

The formulation of this problem has two advantages. The first one is that it ostensibly gives rise
to crack paths that are kink-free (C 2), at least away from the initial crack tip. This is convenient
for the current status of the algorithm to deform the universal mesh. The second advantage is that
because the boundary conditions depend on the crack length and the crack is always propagating,
the crack length increment, rather than time, serves as the natural evolution parameter. This results
in a substantially simpler algorithm; because otherwise, iterations over the crack geometry may be
needed to find the crack path at a given time instant.

The evolution of the discrete crack is computed in a rather standard way. The discrete crack is
constructed by interpolating a sequence of computed crack tips with a cubic spline. Alternatively,
the discrete crack might be regarded as a sequence of connected kink segments. The two curves do
not generally coincide, but one interpolates the other, so for the order of accuracy of the algorithm,
the distinction is unnecessary. This second perspective is useful to construct the discrete evolution
of the crack. The relative angle between consecutive kink segments is computed as in [39], by
taking advantage of a first-order asymptotic expansion of the crack tip stress intensity factors for an
infinitesimally short added kink [40].

We test the performance of the algorithm to simulate crack propagation using four examples. In
all cases, continuous piecewise affine finite element spaces are adopted to approximate the displace-
ment field. In the first example, we use a known analytical solution for the elastic fields in an infinite
medium with a circular arc-shaped crack to construct a loading history that is parameterized by
crack length and that results in a circular crack path. We take advantage of this solution to assess the
order of convergence of the crack path and its first derivative. Other examples include a comparison
with a set of experiments from the literature and an example that appears to be commonly studied
in the literature on numerical methods for crack propagation problems.

1.1. Organization

We begin with the description of the continuous problem defining the evolution of an always-
propagating crack in an isotropic linear elastic solid in Section 2. The algorithm to approximate this
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Figure 2. A schematic of the quasistatic crack propagation problem. A closed domain � contains a crack
�a. The boundary @� has prescribed displacement along �g and prescribed traction along �� .

evolution is presented in Section 3, which uses a mesh of triangles that conforms to the crack to com-
pute approximations to the stress intensity factors at each step of the evolution. These conforming
triangulations for cracked domains are constructed by deforming universal meshes with the algo-
rithm discussed in Section 4. Numerical examples demonstrating the evolution of discrete cracks are
shown in Section 5. We examine in detail the accuracy of various features of the computed fractures.

2. PROBLEM STATEMENT

We consider a 2D homogeneous linear isotropic elastic medium without body forces initially occu-
pying a closed smooth domain with nonempty interior � � R2. The domain contains an initial
crack �a D �a.`0/ � �, which is a rectifiable and simple curve‡ with length `0 > 0 (Figure 2). We
assume that �a.`0/ is an edge crack, namely, a crack that emanates from @� so that @�\�a.`0/ is
a single point.

We wish to compute the subsequent crack path �a D �a.`/ parametrized by its length ` > `0
until it reaches a maximum length `max > `0, for any loading history induced by a class of boundary
conditions constructed so that the crack is always propagating. To this end, we first introduce the
elasticity problem associated with the crack path �a.`/ in Section 2.1 and then describe the crack
evolution problem in Section 2.2.

2.1. Elasticity problem

With �a D �a.`/, the governing equations of this cracked medium read as follows:

r � �.ru/ D 0;

u D g.`/;

�.ru/ � n D �.`/;

�.ru/ � n D 0;

in �`;

on �g ;

on �� ;

on �Ca [ �
�
a ;

(1)

where �` WD int � n �a.`/, u W �` ! R2 is the displacement field and � W R2�2 ! R2�2 is
the constitutive relation. Abusing notation, we shall also use � for the stress field �.ru/; � W�` !
R2�2. The vector field n is either the unit outward normal to � (on �� � @�) or a unit normal to
�a. In the latter case, we use �Ca and ��a to denote the same point set �a but emphasize that the
boundary values (traces) of � are evaluated from different sides of �a. These different boundary

‡A simple curve is one that does not intersect itself. Equivalently, a curve with parametrization ˛ W Œa; b� ! R2 is
simple if the mapping ˛ is one-to-one.
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values should be matched with the correct orientation of n so that n points exterior to the region over
which � is evaluated. Subsets of the boundary �g and �� satisfy �g [ �� D @� and �g \ �� D ;.

With Young’s modulus E > 0 and Poisson’s ratio � such that �1 < � < 0:5, the stress � is
related to the displacement u through the constitutive relation:

�.ru/ D E�.ru/ D
�E

.1C �/ .1 � 2�/
.r � u/ IC

E

2 .1C �/

�
ruCruT

�
; (2)

where � is a dimensionless stress tensor. This is the constitutive relation for plane strain problems.
Plane stress cases involve a standard substitution of the elastic constants. The fracture toughness of
the material is denoted by Kc .

We consider a class of boundary conditions such that the crack is always propagating. The dis-
placement and traction boundary conditions g.`/ W �g ! R2 and �.`/ W �� ! R2 are of the
following forms:

g.`/ D C.`/g.`/Kc=E;

�.`/ D C.`/�.`/Kc ;

with g.`/ W �g ! R2 and �.`/ W �� ! R2 known functions of `. The function C W .`0; `max�! R
serves to linearly scale the boundary conditions so that they can be adjusted to critically load the
crack. Roughly speaking, we can say that in the class of problems we consider, the ‘shape’ of
the loading on the boundary is known (g and � ), but its ‘magnitude’ has to be solved for. We call
the function C.`/ the ‘loading history’ and, together with the crack path, is one of the unknowns.

For simplicity, we will also assume that g and � are such that the crack never again gets arbitrarily
close to the boundary during the evolution. More precisely, the distance of �a.`/ n �a.`0/ to @�
remains greater than some � > 0 for all ` 2 .`0; `max�.

The stress intensity factors are defined from the stress field � as follows:

KI D lim
r!0

�p
2	r �##.r; # D 0/

�
; KII D lim

r!0

�p
2	r �r#.r; # D 0/

�
;

where r and # are polar coordinates of the local crack tip coordinate system, with r D 0 at the crack
tip and # D ˙	 coincident with the tangent to the crack at the crack tip.

Therefore, given �a.`/ and C.`/, a unique value for each of the stress intensity factor is defined.
We denote them with KI Œ�a.`/; C.`/� and KII Œ�a.`/; C.`/�.

Dimensionless problem. A convenient restatement of Equation (1) whose solution is independent
of E and Kc is as follows: Find u 2 H 1.�`;R

2/ such that

r � �.ru/ D 0;

u D g.`/;

�.ru/ � n D �.`/;

�.ru/ � n D 0;

in �`;

on �g ;

on �� ;

on �Ca [ �
�
a :

(3)

It is then straightforward to see that if u solves Equation (3), then u D C.`/uKc=E solves
Equation (1).

For a given crack �a.`/, the stress intensity factors in Equation (3) are the following:

KI Œ�a.`/� WD lim
r!0

�p
2	r �##.r; # D 0/

�
;

KII Œ�a.`/� WD lim
r!0

�p
2	r � r#.r; # D 0/

�
;

while those corresponding to Equation (1) follow from these as follows:

KI Œ�a.`/; C.`/� D lim
r!0

�p
2	r�##.r; # D 0/

�
D KcC.`/KI Œ�a.`/�; (4a)
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KII Œ�a.`/; C.`/� D lim
r!0

�p
2	r�r#.r; # D 0/

�
D KcC.`/KII Œ�a.`/�: (4b)

These expressions explicitly show the dependence of the stress intensity factors KI and KII on the
loading history C.`/.

2.2. The problem to be solved—an always-propagating crack

Next, we focus on a particular class of quasistatic crack propagation problems. This is the set of
problems in which the loading history corresponds to a delicately controlled experiment that renders
an always-propagating crack. For smooth functions g and � , such restriction ostensibly simplifies
the problem by suppressing kinks once the crack begins to grow.

From Griffith’s criterion, an always-propagating crack implies that

KI .`/ WD KI Œ�a.`/; C.`/� D Kc; 8` > `0: (5)

We further assume the crack propagation to be irreversible, that is:

�a.`1/ � �a.`2/; `1 < `2; (6)

and to follow the principle of local symmetry (PLS), that is:

KII .`/ WD KII Œ�a.`/; C.`/� D 0; 8` > `0: (7)

The problem then consists in finding the crack �a.`/ and the loading history C.`/ for ` 2 .`0; `max�,
such that Equations (5), (6), and (7) are satisfied.

It turns out that changing the values of E and Kc does not change the solution �a.`/ and C.`/,
as we show in the succeeding texts. Thus, E andKc need not be specified in the problem statement.
As a result, the problem to be solved can be stated as follows:

P: Given �, �, �a.`0/, g.`/, �.`/, and some `max > `0, find C.`/ and �a.`/ such that
KI Œ�a.`/; C.`/� D 1 and KII Œ�a.`/; C.`/� D 0 for all ` 2 .`0; `max�,

Note that this problem includes the standard case in which g and � do not depend on `.
We next see that �a.`/ and C.`/ that solve problem P also satisfy Equations (5), (6), and (7),

regardless of the values of E and Kc . First, notice that because they are solutions of problem P,

KI Œ�a.`/; C.`/� D C.`/KI Œ�a.`/� D 1;

KII Œ�a.`/� D 0;

for ` > `0. This implies that the solution C.`/ satisfies the following:

C.`/ D 1=KI Œ�a.`/�: (8)

Therefore, abusing notation, if now KI .`/ and KII .`/ denote the stress intensity factors for
given values of E and Kc , it follows from Equation (4) that �a.`/ also satisfies KI .`/ D
KcC.`/KI Œ�a.`/� D Kc and KII .`/ D KcC.`/KII Œ�a.`/� D 0 for any ` 2 .`0; `max�. These are
precisely Equations (5) and (7). This demonstrates that the solutions �a.`/ andC.`/ are independent
of the value of E and Kc and that they can be computed as solutions of problem P.

Equation (8) provides an explicit expression for C.`/. We will use it in the following section to
approximate the solution .�a.`/; C.`// of problem P.

3. DISCRETE CRACK EVOLUTION ALGORITHM

In this section, we discuss the numerical scheme to compute an approximation to the solution of
problem P. Roughly speaking, the numerical method consists in the following: (1) deforming the
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universal mesh to obtain a mesh conforming to the existing crack; (2) with such a mesh, computing
a finite element solution for the displacement field in the cracked medium subject to the prescribed
loads; (3) calculating the orientation of the crack increment from the computed solution; and (4)
finally advancing the location of the crack tip to the subsequent instant.

We postpone the discussion of part (1) on constructing meshes conforming to cracked domains
from a universal mesh until Section 4. For the time being, let us assume that such a mesh is available
for each crack path realized during a simulation. We only note that to take advantage of universal
meshes, we will adopt a smooth .C 2/ representation for the crack, even though it is approximated
most easily by a sequence of connected segments.

In the following, we focus on aspects (2)–(4) of the scheme. In Section 3.1, we describe
how we represent evolving cracks. The finite element approximation of displacement and stress
fields in a cracked medium and the evaluation of the corresponding stress intensity factors are
described in Section 3.2. The stepping algorithm to compute the evolution of the discrete crack
is discussed in Section 3.3, ultimately yielding an approximation to the solution .�a.`/; C.`// of
problem P.

3.1. Representing the crack

A discrete crack �ha is defined by a set of control points ¹a�p; : : : ; a0; : : : ; anº, for integers p > 1

and n > 0. The discrete crack �ha is then defined to be the cubic spline that interpolates these control
points and that satisfies the end conditions given by Equation (10). We indicate the dependence of
the spline on these control points with �ha .a�p; : : : ; an/.

An admissible discrete crack is a discrete crack that satisfies the following:

(i) ¹a�p; : : : ; a0º � �a.`0/, so that the discrete crack formed by these points interpolates the
initial crack;

(ii) @�a.`0/ D ¹a�p; a0º, so that the end points of the initial crack are interpolated by the discrete
crack, and in particular, a0 is the initial crack tip; and

(iii) �ha \ @� D ¹a�pº, so that discrete cracks do not cross the boundary of �. In particular, this
implies that ¹a�.p�1/; : : : ; anº � int �.

The last condition is a discrete analog to the condition imposed on �a to remain away from the
boundary, Section 2.

3.1.1. Construction of the cubic spline �ha . Let Sha be the union of the segments joining consecutive
points in the set ¹a�p; : : : ; anº (Figure 3), namely:

Sha .a�p; : : : ; an/ WD
n[

iD�pC1

ai�1ai ; (9)

where p1p2 denotes the (closed) line segment joining points p1; p2 2 R2. Let s W Sha ! R denote
the arc-length parametrization of Sha , with s�p D 0, and set si WD s.ai / for �p 6 i 6 n. It then
follows that jai � ai�1j D si � si�1, for �p < i 6 n.

Abusing notation, we shall identify the discrete crack �ha with its parametric representation
�ha W Œs�p; sn� ! R2. The parametric representation of �ha as a cubic spline is uniquely defined by
the following conditions:

(i) The restriction of �ha .s/ to each interval Œsi ; siC1� is a cubic polynomial in s, for �p 6 i < n.
(ii) The curve �ha interpolates ¹a�p; : : : ; anº, namely,

�ha .si / D ai ; for � p 6 i 6 n:

(iii) The first and second derivatives of �ha with respect to s are continuous at points
¹a�.p�1/; : : : ; an�1º, which ensures that �ha is C 2.
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Figure 3. Sketch of a part of a discrete crack �ha , a cubic spline defined by the points ¹a
�p; : : : ; anº, and

the chord Sha that interpolates the same points. The figure also shows how the universal mesh is conformed
to �ha . The boundary of the isoparametric approximation of the domain � n �ha , namely, the collection of

edges of the mesh that interpolate �ha , is indistinguishable from �ha at this scale.

(iv) End conditions:

d�ha
ds

.a�p/ D
a�.p�1/ � ap
s�.p�1/ � sp

; and
d�ha
ds

.an/ D
an � an�1
sn � sn�1

: (10)

Notice that the right-hand sides of the end conditions (Equation (10)) are unit vectors. These
end conditions have the trait of depending only on ¹a�.p�1/; : : : ; an�1º. As we discuss later in
Section 3.3, the crack evolution algorithm is based on deciding a direction for an � an�1, so these
end conditions guarantee that the tangent to the crack at the crack tip coincides with the computed
direction. Alternative conditions could be considered, such as matching the exact values of the first
and second derivatives at a�p , which may reproduce the initial crack path more accurately. Never-
theless, for simplicity and symmetry, we impose similar conditions (Equation (10)) at both ends of
the crack.

One advantage of selecting Sha as the parametric domain for the spline is that when 
a WD
max0<i6n.si � si�1/! 0, the parametrization �ha converges to the arc-length parametrization. We
take advantage of this fact later for convergence studies.

3.2. Approximating the stress intensity factors

Let an admissible discrete crack �ha and a triangulation conforming to � n �ha be given (Figure 3).
Let us assume that nodes lying on �ha are duplicated to represent the kinematics on either side of the
crack. Then, the stress intensity factors are computed as follows:

(i) We construct a standard finite element space Vh � H 1
�
� n �ha ;R

2
�

over the mesh of trian-
gles, consisting of continuous functions that are affine over each triangle, that is, P1-elements.
We then find uh 2 Vh that minimizes the potential energy

I Œvh� D
1

2

Z
�n�ha

�.rvh/W rvh d� �

Z
��

�.`/ � vh d��

among all vh 2 Vh that satisfy vh D g.`/ on �g§, where ` D jSha j. The discrete solution uh is
an approximation to the solution u of Equation (3).

(ii) Once uh is known, and therefore, � .ruh/ is also known, we compute the approxima-
tion to the stress intensity factors KhI and K

h

II corresponding to this deformation of
� n �ha , taking advantage of an auxiliary field for an interaction integral specifically
designed for curved cracks [41]. We summarize the essential features of this method
in Section 6.

§More precisely, vh D Ihg on �g , where Ihg is the interpolated value of g .
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(iii) Because we are interested in crack evolutions satisfying KI .`/ D 1 for all crack lengths, we
exploit the linearity of the problem to construct a finite element solution uh D C.`/uh¶, whose
stress intensity factors satisfy the following:

KhI D C.`/K
h
I ; KhII D C.`/K

h

II : (11)

Then, by setting C.`/ D 1=KhI (as in Equation (8)), we have KhI D 1.

A number of approximations have been made in this computation. Given a crack �ha , the exact
values of the stress intensity factors for Equation (3) with ` D

ˇ̌
�ha
ˇ̌

are KI
�
�ha
�

and KII
�
�ha
�

(Section 2.1). However, KhI and K
h

II are only approximations to the exact values because of
errors that stem from the following: (1) setting ` D jSha j; (2) the finite element approximation
of displacements and stresses; and (3) the use of numerical quadrature in evaluating interaction
integrals.

In summary, given �ha , the aforementioned three steps define an algorithm that returns values

KhI
�
�ha
�

and KhII
�
�ha
�
. We use these two values in the next section to compute approximations to

the evolution of the crack and the loading history in problem P.

3.3. Computing the crack evolution

Next, we specify an evolution of the discrete crack which yields approximations for �a.`/ and C.`/
in problem P. In the following, for � 2 R, let

t .�/ D cos � e1 C sin � e2

be the unit vector that forms an angle � with a reference orthonormal basis .e1; e2/.

(i) Initialization:

(a) Given
a > 0, construct an admissible crack �h;0a with n D 0, such that jai � ai�1j <

a for �p < i 6 0. Hence, �h;0a approximates �a.0/ as 
a! 0.

(b) Let �0 2 Œ0; 2	/ be the angle that the tangent to the crack at the crack tip forms with
respect to the basis .e1; e2/. Hence,

t .�0/ D
a0 � a�1
ja0 � a�1j

:

(ii) Length stepping:
Given N 2 N such that `0 CN
a 6 `max, for n D 0; : : : ; N � 1,

(a) ComputeKnII D K
h
II

h
�
h;n
a

i
andKnI D K

h
I

h
�
h;n
a

i
. Of course,KnI D 1 (Section 3.2).

(b) Set C n D 1=KnI , which we shall use later as an approximation to C.`0 C n
a/.
(c) Compute the crack propagation direction according to the PLS. That is, the kink angle

at the crack tip is determined with

˛nC1 D 2 arctan

2
64 �2KnII=K

n
I

1C

q
1C 8

�
KnII=K

n
I

�2
3
75 ; (12)

and the crack propagation direction is t .�nC1/, where

�nC1 D �n C ˛nC1: (13)

¶It is the finite element solution to a problem whose traction on �� is � D C� , and the displacement on �g is Cg .
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Equation (12) follows from imposing KII D 0 on an asymptotic expansion of the
stress intensity factors upon the addition of an infinitesimal kink [40], and it is accurate
up to the first order with respect to the kink angle ˛nC1. The expression coincides with
that from the maximum hoop stress criterion [39] to first order as well. This is a com-
mon feature of various fracture criteria that is discussed in detail in [40]. Equation (12)
returns values of ˛nC1 between ˙2 arctan

�
1=
p
2
�
D ˙70:5ı.

(d) Compute a new crack tip anC1 with

anC1 D an C
a t.�nC1/:

(e) Set �h;nC1a D �ha .a�p; : : : a0; : : : ; anC1/.

The error of �h;na in approximating �a.`0 C n
a/ is controlled by the two parameters 
a and
h. The expectation is that �ha should converge to �a as 
a ! 0 and h < 
a. In Section 5, we
showcase through numerical examples that C n approximates C.`0Cn
a/ for 0 6 n < N and that
�
h;n
a approximates �a.`0 C n
a/, the solutions of problem P in Section 2.2.

3.4. Discussion

Further approximating the geometry. A convenient further approximation to make is to replace
the curved domain � n �ha by its isoparametric approximation, as it is standard in finite element
computations. In this case, this means that computations are performed on the polygonal domain
whose boundary is the union of edges joining nodes on @�[�ha (Figure 3). The numerical examples
in Section 5 were performed in this way.

Discrete irreversibility condition. The construction of the cubic spline cracks does not guarantee
that �h;na � �

h;nC1
a . In fact, �h;na 6� �

h;nC1
a most of the times. However, �h;nC1a interpolates �h;na

at ¹a�p; : : : ; anº.

4. CONFORMING TRIANGULATIONS FROM UNIVERSAL MESHES

In this section, we describe an algorithm for computing a triangulation that conforms to a given
discrete crack �ha by deforming a universal mesh Th. The algorithm builds on ideas introduced in
[37, 38, 42] and [43]. It consists of three steps: (1) extension of the crack on a neighborhood of
the crack tip(s); (2) projection of a specific set of nodes onto the discrete crack, to obtain a mesh
conforming to it; and (3) directional relaxation of the nodes near the crack to improve the quality of
the resulting mesh. Each one of these steps is discussed in the succeeding texts.

4.1. Extension of discrete cracks

The meshing algorithm requires examining the orientation s 2 ¹�1;C1º of the crack at a few
nearby vertices, specifically at vertices of a subset of the triangles in Th intersected by �ha . It is
well known that the normal to �ha provides a canonical definition of an orientation within its tubular
neighborhood. However, it is possible that a triangle is intersected by �ha , yet its vertices do not all
lie in the tubular neighborhood of �ha . Such an instance is depicted in Figure 5(c) and can occur
irrespective of the mesh size of Th. Therefore, we seek an extension of s over neighborhoods of the
endpoints a�p and an. This is most conveniently achieved by extending the crack �ha to �h;ext

a and
using the normal of the latter to define s. Figure 4 illustrates the idea.

In addition to defining s, �h;ext
a simultaneously provides a differentiable extension of the local

normal to the crack in neighborhoods of its endpoints. Later in Section 4.2.4, we use this extended
normal field (and the direction orthogonal to it) in a directional vertex relaxation algorithm to
optimize qualities of triangles that are deformed in the universal mesh.

The definition of �ha as a cubic spline (more generally, as a parametric curve) facilitates a natural
extension �h;ext

a W Œs�p � "�p; sn C "n� ! R2 for sufficiently small "�p; "n > 0. The extension is
defined by merely evaluating the polynomial expressions for �ha in the intervals Œs�p; s�pC1� and
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Figure 4. Extension �h;ext
a of the cubic spline �ha to define an orientation s in a neighborhood of the

discrete crack.

Œsn�1; sn� over the extended intervals Œ�"�p C s�p; s�pC1� and Œsn�1; sn C "n�, respectively. Then,
denoting the (oriented) unit normal to �h;ext

a by N , we set the following:

s.x/ WD

8<
:
C1 if x 2 NC;
�1 if x 2 N�;
undefined otherwise,

(14a)

where NC WD
°
�h;ext
a .�/C Œ0; /N.�/

ˇ̌̌
� 2 .�"�p C s�p; sn C "n/

±
; (14b)

and N� WD
°
�h;ext
a .�/ � .0; /N.�/

ˇ̌̌
� 2 .�"�p C s�p; sn C "n/

±
: (14c)

Here,  > 0 is a parameter. Notice that s D C1 on �h;ext
a by virtue of Equation (14b). The impor-

tance of these neighborhoods in the algorithm is that only triangles contained in N˙ are deformed
in the universal mesh.

The parameters "�p and "n are chosen such that N˙ contains the set of triangles intersected by
�ha . Alternatively, such a condition is satisfied for given "�p and "n when Th is sufficiently refined
near the crack. We have adopted the second point of view in our implementation, by checking that
s is defined at vertices of triangles intersected by �ha rather than estimating the requisite values for
"�p and "n. We expand on these aspects of the implementation in Section 4.2.5.

The parameter  in Equation (14b) and (14c) is the radius of the neighborhoods N˙ of �h;ext
a .

Its choice is dictated by the curvatures and feature sizes of �h;ext
a and is bounded from above by the

distance of �h;ext
a to its medial axis. We also note that  can be smaller than the radius of the tubular

neighborhood of �ha , particularly when the extended crack has large curvatures at the endpoints.
When "�p and "n are small,  will be close to the radius of the tubular neighborhood of �ha . The
algorithm does not explicitly require estimating . However, it requires that the local mesh size in
the vicinity of the crack be sufficiently small compared with .

4.2. Deforming a universal mesh to conform to a crack

4.2.1. Definition of a universal mesh. To introduce the notion of a universal mesh for the crack
�ha , we recall terminology introduced in [37, 38], suitably extended to the case of cracks considered
herein. Let 	 denote the closest point projection onto �h;ext

a defined as follows:

	.x/ WD arg min
y2�h;ext

a

d.x; y/; (15)

where d.x; y/ is the Euclidean distance between points x and y. We say that a triangleK in Th with
vertices ¹u; v;wº is positively cut by �ha if

(i) s is defined at u; v and w;
(ii) s D 1 at two of its vertices and s D �1 at the remaining one; and

(iii) s.u/ D s.v/ D 1) 	.u/ [ 	.v/ � �ha .

The edge in a positively cut triangle having s D 1 at both vertices is called a positive edge. The
interior angle in a positively cut triangle at the vertex of its positive edge closest to �ha is called its
conditioning angle. Figure 5 illustrates these definitions with examples.
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(a) (b) (c)

Figure 5. Examples of positively cut triangles, their positive edges, and conditioning angles. Triangles in (a)
and (c) are positively cut, and their positive edges are indicated. The conditioning angle of the triangle in (a)
is indicated by the angle # . Even though the triangle in (b) is intersected by the crack, it is not positively
cut. Example (b) also highlights that the definition of positively cut triangles requires only inspecting s at
vertices of the triangle; it does not explicitly require examining triangle-crack intersections. In (c), the tubular
neighborhood of �ha is shaded in gray and contains both vertices of the positive edges. The remaining vertex

lies in the tubular neighborhood of the extension �h;ext
a .

(a)
cr

ac
k

(b)

Figure 6. Sketch depicting perturbations near crack tips to satisfy assumption UM1. The closest vertex is
snapped to the crack tip, and vertices within a small radius are perturbed to accommodate such snapping.
Resulting changes in angles and qualities of triangles remain small. Figure (a) shows an example of a mesh
in red and its perturbation in gray. Figure (b) depicts the perturbations of triangles in the 1-ring of the vertex

snapped to the crack tip.

We say that a triangulation Th of � is a universal mesh for the crack �ha with orientation s if

(UM1) There is a vertex of Th coincident with the endpoints a�p and an of �ha ;
(UM2) The conditioning angle in each positively cut triangle is strictly acute; and
(UM3) The size of each positively cut triangle is sufficiently small; see the discussion in the

succeeding texts.

Observe that there are no conformity requirements imposed on a universal mesh. In other words,
none of the vertices in a universal mesh need to lie on �ha . Condition UM1 is of course not auto-
matically satisfied by an evolving crack. Instead, it is always possible to add small perturbations to
vertices near the crack tips to satisfy it. To this end, we follow the strategy described in [38], which
for brevity is not described here but is depicted with an example in Figure 6. The requirement of
acute conditioning angles (UM2) is most conveniently satisfied by ensuring that triangles in the
vicinity of the crack are acute angled. In the examples in Section 5, we adopt meshes with all acute-
angled triangles. The perturbations of vertices to satisfy UM1 can be performed while keeping all
triangles acute angled [38].

The restriction on the mesh size in UM3 depends on the curvatures and feature sizes of �h;ext
a ,

as well as on the qualities and conditioning angles of positively cut triangles in Th. Estimates for it
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can be found in [42]. Basically, conditioning angles closer to 90ı, larger curvatures, smaller feature
sizes, and worse triangle qualities, all lead to smaller required mesh sizes. For a circle immersed in
a mesh of equilateral triangles, the upper bound on the mesh size computed in [42] is approximately
one fifth of its radius.

4.2.2. Deforming a universal mesh. We recover a mesh conforming to the crack �ha through a
sequence of perturbations of a given universal mesh. A mesh conforms to a discrete crack �ha if the
set of edges interpolating the crack (i.e., both vertices on �ha ) is a nonempty polygonal chain with
terminal vertices a�p and an. In particular, this implies that a�p and an are vertices of the mesh. To
separate the kinematics of the crack faces, after conforming the mesh to the crack, we duplicate the
nodes lying on �ha while omitting the node at the propagating tip of the edge crack.

To facilitate describing these transformations/deformations, some notation is helpful. A triangu-
lation Th of � is specified by the following: (1) an index set I for its vertices; (2) a corresponding
list of their coordinates V ; and (3) a list of triangle connectivities that are 3-tuples of indices in I all
oriented in the same way. We denote this identification by Th D .V; I; C /. Cartesian coordinates of
a vertex with index i 2 I are denoted by vi 2 V . The star of a vertex i 2 I , denoted Star.i/, is the
set of triangles in Th that have i as one of their vertices. In the literature, Star.i/ is also commonly
referred to as triangles in the 1-ring of i . Of course, a triangulation here is to be understood in the
usual sense, namely, the intersection between the closure of two triangles is either empty, a common
vertex, or a common edge.

Let T c
h

denote the mesh conforming to �ha computed by perturbing a universal mesh Th for
�. The two triangulations differ only in the location of a few vertices. This relation between the
two meshes is succinctly summarized as T c

h
D .V 0; I; C /, conveying that both meshes have iden-

tical index sets and connectivities. In particular, vertices are neither introduced nor removed in
the algorithm.

The algorithm to deform the mesh effectively reduces to deciding which vertices in Th to perturb
and how to move them, in such a way that the resulting mesh T c

h
is valid (no inverted triangles and

conforming to the domain) and has triangles with good quality. The strategy is presented in two
parts. First, we identify vertices that are projected onto the crack. Then, we describe a ‘relaxation’
step that moves vertices near the crack to improve the quality of the resulting mesh.

4.2.3. Projections onto the crack. Let �h+ denote the set of all positive edges in Th, and I+ � I

be the set of all vertices in �h+ . Algorithm 1 provides the steps in identifying �h+ . In the follow-
ing, we identify a subset of edges Q�h+ in Th whose vertices QI+ � I+ are mapped to their closest
point in �ha , as illustrated in Figure 7. Our definition of Q�h+ and the resulting set of vertices QI+ are
such that

Figure 7. Projecting vertices of a universal mesh onto a crack. A crack, shown in red, is immersed in a
universal mesh that has a vertex at each crack tip. Triangles shaded in gray are positively cut (and equilateral),
and the set of edges �h+ shown in dashed blue are their positive edges. Notice that �h+ satisfies conditions
A1–A2 in Section 4.2.3 but not A3 because the hatched triangles in the mesh have all three vertices in �h+ .
The set Q�h+ shown in green and computed in Algorithm 2, however, satisfies all three. Projecting its vertices
onto their closest point in the crack results in a mesh that conforms to the latter, without mapping all three

vertices of any triangle onto the crack.
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(A1) 	 W Q�h+ ! �ha is a homeomorphism;
(A2) vertices coincident with crack tips are included in QI+, namely, a�p; an 2 Q�h+ ; and
(A3) no triangle in Th has all three vertices in QI+. Equivalently, .i; j; k/ 2 C ) ¹i; j; kº 6� QI+.

Because Th is a universal mesh for �ha , we know 	 W �h+ ! �ha is a homeomorphism [42].
When Th is sufficiently refined at a�p and an, both a�p and an are necessarily vertices of positive
edges, that is, a�p; an 2 �h+ (see [44, Chapter 4]). Hence, �h+ and its vertices I+ satisfy the first two
requirements A1 and A2. If by coincidence, no triangle in Th has all three vertices in I+, we can
indeed set Q�h+ D �

h
+ and QI+ D I+. This is however not the case in general, as the example in Figure 7

shows.
Condition A3 is essential to prevent all three vertices of a triangle from being mapped onto the

crack. In the example in Figure 7 for instance, projecting vertices in I+ onto the crack results in all
three vertices of the hatched triangles being mapped onto the crack. The qualities of the resulting
triangles depend exclusively on the local shape of the crack and can be arbitrarily poor.

It is in fact possible to identify QI+ � I+ that guarantees A3. To this end, let E+ denote the set of
polygonal chains in Th whose vertices are included in I+ and with terminal vertices a�p and an. This
collection is nonempty because �h+ 2 E+. Borrowing terminology from the theory of planar graphs,
we identify Q�h+ 2 E+ as any ‘triangle-free’ chain in E+. As the name suggests, we say that a chain
� 2 E+ with vertices

�
a�p D vi0 ; vi1 ; : : : ; vim D an

�
is triangle-free if .i; j; k/ 2 C ) ¹i; j; kº 6�

¹i0; i1; : : : ; inº.
There may be multiple triangle-free chains in E+, and any one among them can be cho-

sen as Q�h+ . It appears that a canonical definition for Q�h+ would be as the shortest chain in
E+, where the length of a chain is given by the number of edges comprising it. We choose a
more efficiently computable solution given by algorithm 2, which identifies QI+ as an ordered list
of vertices.

The set Q�h+ follows as the set of edges in Th that joins consecutive vertices in QI+.

The set Q�h+ as defined earlier in the text satisfies A2 and A3 essentially by definition. We expect
that it satisfies A1 because of the corresponding property of the set of positive edges �h+ , but a
rigorous demonstration is pending. We have verified it for numerous test cases, including all the
examples in Section 5.
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4.2.4. Directional vertex relaxation. The next set of perturbations are aimed at controlling the qual-
ities of triangles in the 1-rings of vertices in QI+, to accommodate their projection onto the crack.
A small set of vertices IR � I in the vicinity of QI+ are relaxed following an optimization-based
directional vertex relaxation algorithm introduced in [43].

A good candidate for IR in a mesh with relatively uniformly sized triangles in the vicinity of the
crack is set as follows:

®
i 2 I n QI+ j d.vi ; �/ 6 r; vi 2 N˙

¯
; (16)

where r equals a few multiples of the mesh size of Th around the crack. Observe that IR is disjoint
from QI+ because vertices in the latter are projected onto the crack. We require that vertices in IR

belong to N˙ because their direction of relaxation is along the local normal to �h;ext
a , which is well

defined in N˙.
In adaptively refined meshes, however, Equation (16) inevitably results in either too many or too

few vertices being relaxed. A definition suitable for such meshes is based on the notion of the graph
distance to QI+. Let gd.i; j / denote the graph distance between vertices i and j , defined as the length
of the shortest polygonal chain in Th with terminal vertices i and j . Then, for a given positive
integer Nrelax, we set the following:

IR WD
®
i 2 I n QI+ j gd

�
i; QI+

�
6 Nrelax; vi 2 N˙

¯
; (17)

where gd
�
i; QI+

�
WD minj2 QI+

gd.i; j /.
We presume that a relaxation direction is prescribed for each vertex in IR, an assumption that is

crucial for the simplicity and efficiency of the optimization algorithm. It is also a natural one in the
current context, because the normal to the crack at the closest point projection of a vertex serves as
an obvious choice. Specifically, the relaxation direction is defined for vertices in IR as follows:

dn.x/ WD N.	.x//; (18)

the normal to �h;ext
a at the closest point projection of point x. Equation (18) is well defined over

N˙, and hence, over IR, because by definition of Equation (17) (or Equation (16)), all vertices in
IR belong to N˙.

It is also beneficial to relax vertices along the local tangential direction to �h;ext
a , which is the

direction orthogonal to dn. This is especially so in meshes having conditioning angles that are close
to 90ı. In such meshes, tangential relaxations mainly help improve the qualities of positively cut
triangles whose positive edges are projected to short lengths. Details of tangential relaxations can
be found in [43]. We use both normal and tangential relaxations in our numerical examples.
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The perturbation distances for vertices in IR along their respective relaxation directions are
computed to optimize the qualities of triangles in their 1-rings. For a given quality metricQ, the per-
turbation distance �i for i 2 IR is computed as follows. Let

®
Kij

¯m
jD1

be the triangles in the Star.i/.
Let qij .�/ denote the quality Q of triangle Kij when its vertex i is perturbed to vi C �dn.vi /. We
set the following:

�i WD arg max
�2R

min
16j6m

qij .�/: (19)

Computing the perturbation distance in Equation (19) in fact only requires the solution of scalar
equations. In our examples, we choose the metric Q introduced in [45] that assigns to triangle K
with signed area 
K and edges with lengths `1; `2; `3; the quality

Q.K/ WD
4
p
3
K

`21 C `
2
2 C `

2
3

: (20)

The metric in Equation (20) is related if not equivalent to other commonly used metrics. For this
specific choice of Q, resolution of Equation (19) simplifies further to computing roots of quadratic
and cubic polynomials as explained in [43].

Algorithm 3 summarizes the relaxation procedure with the choice of dn in Equation (18) as the
relaxation direction. The relaxation algorithm is performed iteratively, with each iteration consisting
in relaxing vertices in IR in a specific order. Anticipating that triangles in the vicinity of the crack
require most improvement in quality because of projecting vertices in QI+ onto �ha , we relax vertices
in IR in ascending order of their Euclidean distance from �

h;ext
a .

Convergence of these relaxation iterations is examined in [43]. For the examples in Section 5, we
perform a fixed number of iterations.

4.2.5. Remarks on implementation.

Choice of algorithmic parameters. At first sight, it may appear that the algorithm requires explicitly
choosing parameters "�p; "n and . After all, the definition of the orientation s depends on them
and is required for identifying the following: (1) the set of positively cut triangles and (2) the set
IR of vertices to be relaxed. We discuss in the succeeding texts that we can avoid estimating these
parameters when the background mesh is sufficiently refined around the crack.

Let us examine the identification of positively cut triangles described in Section 4.2.1. Given
triangleK with vertices ¹u; v;wº, Equation (14) reveals that condition (1) is equivalent to checking
if ¹u; v;wº � N˙.
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Such a check explicitly requires defining the sets N˙, which in turn entails choosing parameters
"�p , "n, and . Additionally, it may also be computationally expensive to perform in practice.

Notice however that a positively cut triangle is necessarily intersected by �ha and that the col-
lection of triangles intersected by �ha is independent of  and "�p; "n. Therefore, the collection
of positively cut triangles is identified by checking (2) and (3) over triangles that are intersected
by �ha . It is not necessary to precisely compute triangle-crack intersections. Instead, it suffices to
check (2) and (3) over a collection that merely includes all triangles intersected by �ha , which can
be determined efficiently using local bounding boxes around the crack for instance.

The aforementioned observations show that for fixed "�p , "n, and  (whatever they may be), a
sufficiently small mesh size around �ha ensures that all vertices of triangles intersected by the crack
belong to the sets N˙. Hence, in a practical implementation, refinement around the crack avoids
the need to specify "�p , "n, and  while identifying positively cut triangles. When "�p , "n, and 
are explicitly chosen, it may be possible to additionally estimate the necessary refinement of the
mesh around the crack. This is an important step in automating the algorithm but is one that is still
outstanding.

Similarly, identifying the set IR requires checking if vertices within a few mesh sizes from the
crack (based on Euclidean or graph distance) are included in N˙. For given "�p , "n, and , this will
be the case when the background mesh is sufficiently refined.

Computation of the graph distance. Identifying the set of vertices to relax according to
Equation (17) requires computing the graph distances of vertices in the vicinity of the crack to
vertices in QI+. These distances can be computed, for instance, using Dijkstra’s algorithm with a
graph-based representation for the triangulation Th [46].

As illustrated in Figure 8, a simpler alternative is possible in our case. It consists in recursively

gathering vertices in 1-rings, starting from the 1-rings of vertices in QI+. Specifically, let
?
v .¹iº/ � I

denote the set of vertices of triangles in Star.i/, and define
?
v .A � I / WD [i2A

?
v .¹iº/. Then,

notice that

¹i 2 I W gd.i; A/ 6 1º D
?
v .A/ for any A � I: (21)

In particular, choosingA D QI+ in Equation (21) shows that IR D
?
v
�
QI+
�
n QI+ for the choiceNrelax D 1.

Figure 8. Identifying vertices around QI+ based on the graph distance. For the example discussed in
Section 4.3, the figure illustrates identifying vertices to be relaxed according to Equation (17) by recursively

gathering vertices in 1-rings. For example, the set
?
v ı

?
v ı

?
v
�
QI+
�
n QI+ equals IR for the choice Nrelax D 3.
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A choice Nrelax > 1 only requires a recursive application of Equation (21) because we have the
following relation:

®
i 2 I W gd

�
i; QI+

�
6 Nrelax

¯
D

?
v ı

?
v ı : : : ı

?
v„ ƒ‚ …

Nrelax times

�
QI+
�
: (22)

Equation (22) holds for any A � I , but has been stated for QI+, the set of interest. Hence, IR in
Equation (17) is computed as follows:

IR D

8<
:
?
v ı

?
v ı : : : ı

?
v„ ƒ‚ …

Nrelax times

�
QI+
�9=
; n QI+: (23)

Equation (23) also explicitly reveals the recursive nature of its implementation. To facilitate an
efficient implementation, we note that because

?
v ı

?
v ı : : : ı

?
v„ ƒ‚ …

m times

�
QI+
�
�
?
v ı

?
v ı : : : ı

?
v„ ƒ‚ …

mC1 times

�
QI+
�
;

vertices are tagged once their 1-rings have been inspected to avoid revisiting them during the
recursive aggregation in Equation (23).

4.3. Meshing algorithm

Algorithm 4 summarizes the steps to determine a mesh T c
h

conforming to �ha by project-
ing and relaxing vertices of a universal mesh Th. Three integer parameters are required as
inputs:

(i) Nrelax: graph distance-based radius to identify the set of vertices to relax IR;
(ii) Nsteps: number of steps in which vertices in QI+ are projected onto the crack; and

(iii) Niter: number of iterations of vertex relaxation.

It is indeed possible to estimate each of these parameters during the execution of the algorithm, but
we have retained them as inputs for simplicity and to accurately reflect the implementation used in
the examples in Section 5. The reasoning behind projecting vertices in QI+ onto the crack in multiple
steps is discussed in [43]. While vertices in QI+ are finally snapped to their closest point in �ha
irrespective of the choice of Nsteps, the locations of vertices in IR do depend on Nsteps. Algorithm 4
includes additional relaxation iterations once vertices in QI+ are projected onto the crack because
a convergence criterion for such iterations has not been discussed here. Relaxation iterations can
be terminated if qualities of triangles are deemed to have converged in a sense that is discussed
in [43].

We conclude this section with the example shown in Figure 9 demonstrating the application of
Algorithm 4 and examining the qualities of triangles in the computed mesh. The figure shows a
leaf-shaped domain with its midrib representing a crack in it. The boundary of the domain is a
closed cubic spline interpolating 61 points, while the midrib is a natural cubic spline interpolating
6 points. For illustrative purposes, we constructed an adaptively refined triangulation to serve as a
universal mesh for the domain by tiling an adaptively refined quadtree with stencils of acute-angled
triangles [47]. The algorithm described in [37, 43], which closely resembles Algorithm 4, yields
a triangulation conforming to the domain boundary that serves as a universal mesh for the midrib.
Then, application of Algorithm 4 yields the final mesh for the domain conforming to the midrib.
The figure also shows statistics comparing the qualities of triangles before and after the application
of Algorithm 4.
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4.4. Discussion

Robustness of the meshing algorithm for computed crack paths. The universal mesh Th plays the
essential role of returning a mesh conforming to the crack at each time step, which is used in
step (3.3) in Section 3.3. A crucial question is under which sufficient conditions deforming the
universal mesh to conform to the crack will return a valid mesh with all elements of a guaran-
teed minimum quality. On the basis of previous work for meshing domains [37, 42], one of the
requirements is that at any point x 2 �ha , the size of the elements in Th near x be smaller than a
fraction of the radius of curvature at x. This is the motivation behind the introduction of a crack
defined by a cubic spline, sidestepping the kinks of cracks formed by a collection of connected seg-
ments such as Sha defined in (9). In fact, the algorithm to deform the mesh in Section 4.2 is not
well defined for cracks with kinks. The smoothness of the crack also enables the construction of a
convenient auxiliary field for the interaction integral, used for the computation of stress intensity
factors (Section 6)‘.

For the crack evolution algorithm to be efficient, it is necessary to set h D O.
a/, or as we do in
the examples later, 
a=h constant. Hence, we need to have the following:

lim inf
�a!0

H


a
> 0; (24)

where H D H
�
�ha
�

denotes the minimum radius of curvature of �ha . This means that either H is
bounded away from zero independently of 
a or H tends to zero no faster than 
a. Otherwise,
because the mesh deformation algorithm requires h 6 cH for some constant c > 0 (see [42] and
Section 4.2), if H D o.
a/, we would need to have h D o.
a/, an undesirable scaling.
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Figure 9. An example demonstrating the triangulation of a cracked domain using Algorithm 4.

In all numerical examples in Section 5, the results indicate that the curvature of the discrete cracks
remains bounded uniformly in h everywhere along the crack, except of course where kinks are
expected to appear. A few of the examples display a kink as soon as the crack begins to propagate,
and the radius of curvature of the splines that approximate the kink are roughly proportional to 
a.
Hence, Equation (24) is satisfied for the numerical examples shown later. This observation is not a
foregone conclusion, because the crack paths themselves are obtained as parts of the computation.

Periodically changing the universal mesh. If the mesh size of the universal mesh is small enough, it
is in principle possible to use the same universal mesh for simulating the entire evolution of a crack.
In practice, we often need to reduce the size of the mesh near the crack to accurately compute the
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stress intensity factors. Therefore, the same universal mesh may be used for only a few loading steps.
It is then replaced by a new one that is better adapted to subsequent manifestations of the crack path.

5. NUMERICAL EXAMPLES

We examine the performance of the proposed framework to simulate evolving cracks with four
examples. The first example is that of a circular arc crack in an infinite medium subjected to far-field
stresses. Taking advantage of Muskhelishvili’s analytical solution in [48], we construct an exact
solution for problem P presented in Section 2.2 and use it to check the accuracy of the computed
crack paths.

Then, we discuss two examples using geometries that have been considered before in the litera-
ture. The example in Section 5.2 is one of a precracked perforated plate subjected to a three-point
bending test. The resulting crack paths are compared with experimental data from [1, 49]. The fol-
lowing example in Section 5.3 considers a clamped beam subjected to a shear load. Its solution is
compared with that in [50]. The final example in Section 5.4 considers the propagation of a crack
in a medium with a stiff inclusion where, for demonstration purposes, we periodically adapt the
universal mesh around the evolving crack.

In each of the first three examples, we investigate the convergence of the computed crack paths
in two norms we define later. We observe that the computed paths depend very weakly on the mesh
and that they indeed converge as 
a; h& 0.

The preexisting crack in each example is nearly orthogonal to the boundary of the domain and is
sampled by 200 equidistant control points. Hence, p D 200 in the notation introduced in Section 3.1.
Special care is needed while perturbing nodes on the boundary of the domain that are in the vicinity
of the (nonpropagating) crack tip a�p . In particular, the relaxation direction for such nodes in the
meshing algorithm are chosen such that these nodes remain on the boundary.

Finally, as a convention, in showing the results of the numerical examples, we do not distinguish
between exact and approximate quantities, unless necessary. For example, we useKII .`/ to indicate
the piecewise affine interpolant of KhII

h
�
h;i
a

i
for i D 0; 1; : : :.

5.1. Circular arc crack

The displacement and stress fields of an infinite medium that contains a crack shaped as a circular
arc subjected to far-field stresses and traction-free faces, as illustrated in Figure 10(a), was computed
in [48]. We provide a computer program to evaluate these fields [51]. The corresponding stress
intensity factors can be found in [40]. We use this solution to construct a loading history that is
applied as Dirichlet boundary conditions over the boundary of a square-shaped domain, as illustrated
in Figure 10(b). The loading history ensures that the crack follows a circular arc.

Figure 10(b) shows a square-shaped domain � with a preexisting crack of radius R D 2 and
angular span #0 D 	=8. Hence, the initial crack length is `0 D R#0. Let uexact.#; �x; �y/ denote
Muskhelishvili’s exact solution for the displacement field for the problem illustrated in Figure 10(a)
with �xy D 0. The arguments #; �x and �y of uexact denote its dependence on the angular span of
the crack and the applied far-field stresses, respectively. Dirichlet boundary conditions are applied
over the entire boundary (�g D @�) with the load given by the following:

g.`/ D uexact.`=R; �x.`=R/; �y.`=R// on @�: (25)

In Equation (25), the span of the crack is specified via its length by # D `=R, while the stresses
�x.#/; �y.#/ are given by the following:

�x.#/ D
.15C 20 cos.#/ � 3 cos.2#//sec.#=2/

16
p
	R sin#

(26a)

�y.#/ D �x.#/

�
16

3.cos.2#/ � 5/ � 20 cos.#/
C 1

	
: (26b)
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(a) Circular arc crack problem (b) Modeled domain

(c) Universal mesh

Figure 10. Domain and boundary conditions.

The stresses �x.#/ and �y.#/ in Equation (26) yield a loading g.`/ in Equation (25) that ensures
KI .`/ D 1 and KII .`/ D 0 for any ` 2 Œ0; 	R/. Hence, a crack of initial length `0 that propagates
along a circular arc under g.`/ in Equation (26) satisfies (5) and (7), namely, KI .`/ D 1 and
KII .`/ D 0 for all ` 2 .`0; 	R/. So together with C.`/ D 1 for all `, they form a solution to
problem P.

5.1.1. Simulation setup. The analyses were carried out with four progressively refined universal
meshes. The coarsest one is shown in Figure 10, and its refinements were constructed by recursively
subdividing each triangle into four self-similar ones. Triangles in the vicinity of the (predicted)
crack path had approximately equal size hcrack, which was set to be smaller than the mesh size
h D maxK2Th diam.K/. The ratio 
a=hcrack � 2 was kept constant over all simulations. We
observed oscillations in the crack path when 
a=hcrack < 1, so as heuristics, we chose to utilize
larger ratios.

For the mesh shown in Figure 10, hcrack=R � 0:0425. The final solution shown in Figure 11
is the result of 15 crack-tip increments. The number of increments doubles when the mesh size
is halved. For completeness, we mention that the parameters used in the meshing algorithm were
Nrelax D 8;Nsteps D 4;Niter D 4. The interaction integral was computed with radius R=R D 1=4

(Section 6). We assume a state of plane strain and a Poisson ratio of � D 0:3, although any value
�1 < � < 0:5 yields the same crack path and loading history.

5.1.2. Convergence of crack paths. Figure 11 shows snapshots of the evolution of the crack and the
meshes conforming to it computed using the universal mesh in Figure 10. It also shows the crack
paths computed with progressively refined universal meshes. It is evident that they are converging
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Figure 11. Snapshots of the evolution of the crack, and the mesh conforming to it, for the analysis with the
coarsest universal mesh. Also shown are the computed crack paths for each level of refinement and the exact

or analytical crack path.

to the exact one as h & 0 (and hence 
a & 0). In the following, we quantitatively examine the
convergence.

By maintaining 
a=hcrack to be a constant, and by constructing progressively refined universal
meshes by subdivision, cracks computed at the end of the loading program have identical final
length L D sn � s�p . Then, let Q�a.s/W Œs�p; sn�! R2 be an arc-length parametrization of the exact
solution �a.L/, a circular arc crack of length L, so that Q�a.s�p/ D �a.L/\ @�. We compare each
computed discrete crack �ha with the exact one using one of the following Sobolev norms:




�ha � Q�a




k;2
D

kX
iD0

0
@Z sn

s
�p

ˇ̌̌
ˇ̌d i

�
�ha �

Q�a
�

dsi

ˇ̌̌
ˇ̌
2

ds

1
A
1
2

; (27a)




�ha � Q�a




k;1
D

kX
iD0

max
s2Œs
�p ;sn�

ˇ̌̌
ˇ̌d i

�
�ha �

Q�a
�

dsi

ˇ̌̌
ˇ̌ : (27b)

Figure 12(a) shows theL2 andH 1 norms of the error, as defined in Equation (27a) with k D 0 and
k D 1, respectively. The convergence curves in the1 norms are shown in Figure 13(a), as defined
in Equation (27b) with k D 0 and k D 1, respectively. The errors in the path and its first derivative
converge as O.h/, in both families of norms. The analysis of problem P and its approximation
has not yet been performed, so it is not possible to say whether these convergence rates could be
expected in general situations. Figure 13(b) shows the norm of the second derivative as a function of
s for
a D 
a0=8. It is worthwhile noting that although the norm of the second derivative deviates
more pronouncedly from the analytical value near the two crack tips and the initial crack location, it
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(a) Convergence of crack path (b) Convergence of loading history

Figure 12. Convergence curves for a circular arc crack.

(a) (b)

Figure 13. Convergence curves for a circular arc crack in the1 norm and value of the norm of the second
derivative of the crack. The norm of the second derivative is oscillatory, but it approaches the exact value for

most values of s, except near s D 0; `0; L.

remains bounded elsewhere. Similar plots for other values of 
a (not shown here) suggest that this
bound is uniform as
a& 0. This is important for the efficiency of the discrete evolution algorithm
§4.4.

To evaluate the convergence of C n to C.`0 C n
a/ as 
a ! 0, we define C�a.`/ to be the
piecewise affine interpolant of the points ..`0; C 0/; : : : ; .L; CL=�a// in the interval Œ`0; L� and
consider the L1Œ`0; L� error:

kC�a � Ck1 D max
`06`6L

jC�a.`/ � C.`/j: (28)

The value of the aforementioned error as a function of 
a is shown in Figure 12(b). It converges
approximately as O.h0:9/. The actual values of C�a.`/ are shown in Figure 14(a), and they are
all near the exact constant value of 1. Similarly, the computed values of KII .`/ are shown in
Figure 14(b), and they lie around the exact value 0. This shows that the asymptotic enforcement
through Equation (12) has the expected effect.

5.2. Perforated plate

In the next example, we compute the evolution of an initially straight crack in a thin perforated plate
during a three-point bending test, depicted in Figure 15(a). Experimental data on the resulting frac-
tures for three combinations of initial crack length and distance of the crack from the perforations
are available from [49]. The experiments were performed on PMMA plates. Correspondingly, we
assume a Poisson ratio of � D 0:35 and a state of plane stress in our numerical simulations. Dis-
placements are constrained at the two supports, and a point-load � is applied at the midpoint of the
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(a) (b)

Figure 14. Evolution of the values computed for C.`/ and KII .`/. By design, they should approximate the
exact values C D 1 and KII D 0 for all `.

(a)

(b)

Figure 15. Geometry for a plate with holes and the universal mesh adopted.

top face of the specimen. The rest of the boundary and the crack faces are traction free. The value
of j� j is arbitrarily set to 1; its choice alters the expected value of C.`/ but not the crack path.

5.2.1. Simulation setup. The geometric parameters for three test cases A, B, and C are listed in the
table adjoining Figure 15(a). For each case, we constructed universal meshes for the domain that are
adequately refined near the holes to represent their geometry well and along the expected crack path.
Figure 15(b) shows the coarsest universal mesh used for case A. A kink appears at the initial crack
tip once the crack begins to propagate. This is manifested as a point where the discrete crack has a
large curvature in its representation as a cubic spline. This necessitates additional refinement of the
universal mesh near the initial tip. We are exploring the possibility of explicitly representing the kink
by accommodating piecewise C 2 curves in the meshing algorithm. Similarly, a robust algorithm to
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deform a universal mesh to conform to triple junctions is essential for accommodating bifurcations
and intersections of crack paths. Both questions remain outstanding at this time.

For each of the three cases, simulations were performed with four levels of refinement for their
respective universal meshes. Similar to the previous example, meshes were refined through self-
similar subdivision. The ratio
a=hcrack � 2 was maintained as a constant throughout, where hcrack

denotes the size (diameter) of the largest triangle intersected by the crack. The coarsest meshes have
hcrack � 0:4. Parameters Nrelax; Nsteps and Niter in the meshing algorithm were all set to 4.

Figure 16. (Top row) Snapshots of the mesh for (left) case A, (middle) case B, and (right) case C. The bottom
row shows the final crack path. Experimental results were digitized from [1, 49].
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Convergence of discrete paths. The errors were computed by adopting the discrete crack that
resulted from the finest mesh (labeled as Q�) as a proxy for the exact solution.
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Simulations were terminated when the fracture approached any of the holes within a distance
4hcrack.D Nrelaxhcrack/, for hcrack in each one of the coarsest meshes, to avoid crack-boundary inter-
sections. This choice resulted in about 10–15 loading steps for coarsest meshes of the different
cases. The number of loading steps doubled with each refinement of the universal mesh. Hence, for
a chosen case A, B, or C, the length of the curves Sha for the final discrete cracks computed with
each of the four universal meshes were identical. This feature facilitates their comparison, which we
undertake subsequently.

The radius used in computing the interaction integrals at the nth load increment was chosen as
R D min¹0:75; d.an; @�/º. When the crack is sufficiently far away from the perforations, we have
that R D 0:75. As the propagating crack tip approaches the holes, it is necessary to reduce the size
of the region over which the interaction integrals are evaluated.

5.2.2. Convergence of crack paths and comparison with experiments. Figure 16 shows representa-
tive snapshots of the crack path for each of the three cases. The paths computed with the coarsest
meshes possess visible oscillations, indicating the need for sufficient mesh refinement. The snap-
shots in Figure 16 are results computed by refining the coarsest meshes once. The figure also
compares the computed paths with the experimental data obtained by digitizing the results in
[1, 49]. The two agree well.

Figures 17(a), (c), and (e) plot the crack paths computed with each of the four universal meshes,
revealing an apparent convergent behavior. Analytical solutions for crack paths are not known for
any of the three cases, which precludes examining the convergence of computed paths. Instead,
Figure 17(b), (d), and (f) compares the paths computed using three universal meshes with the fourth
one computed using the most refined mesh, in the L2 and H 1 norms. These plots do not imply
convergence of computed paths to a limiting one. However, they do suggest that if computed paths
converge, we can expect O.h/ convergence of the L2 andH 1 norms. We also observed that beyond
the initial kink, the second derivative of each computed crack remains bounded irrespective of the
universal mesh used; Figure 18 depicts an example corresponding to case A. This is an important
feature of the solution; because for a fixed (and sufficiently large) ratio of 
a and hcrack, success of
the meshing algorithm with a fixed universal mesh relies on the curvature of the crack remaining
bounded.

Figure 19 shows the evolution of KII .`/=Kc and C.`/ as functions of ` � `0. By definition
of problem P, KII .`/ D 0 for the exact path, except at the commencement of propagation. We
observe that KII .`/ of the computed paths indeed approach zero beyond the initial loading step as
the universal mesh is refined, in all three test cases. Because KII .`�0 / 6D 0, an initial kink appears
at ` D `0. The profile of KII .`/ shows small deviations from zero when the crack turns sharply
around the perforations and also that they decrease with the mesh size.

(a) Values of the second derivatives along
       the entire length of the crack

(b) Values of the second derivatives
        around

Figure 18. Value of the norm of the second derivative of the discrete crack computed with each one of the
four refinements, for case A, as a function of the parametric coordinate s. On the right-hand-side, we show

the close up at ` D `0.
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(a) (b)

(d)(c)

(e) (f)

Figure 19. Evolution of KII .`/ and C.`/. A clear convergence trend is observed. Some additional refine-
ment is needed near some of the holes, and a discontinuity is observed in both KII and C as the crack

begins to grow, because of the appearance of an initial kink.

The loading history C.`/ displays an overall convergent behavior as well. The results suggest that
further mesh refinement is needed near some of the perforations. Notice that the initial kink induces
a discontinuity in the value of C.`/ at ` D `0.

The experiments in [49] were performed by controlling the crack mouth opening displacement
(CMOD). Consequently, the experimental paths possess a monotonically nondecreasing CMOD. In
contrast, our numerical simulations were performed by controlling the crack length. The resulting
CMOD values are plotted in Figure 20. They show that the CMOD does not increase monotonically
with crack advancement in test cases A and C. In particular, we observe a closing of the crack
mouth when the crack turns sharply near the perforations. This suggests short periods of unstable
crack growth in the CMOD-controlled experiments when the crack approaches the perforations. A
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(a)

(c)

(e) (f)

(d)

(b)

Figure 20. Evolution of crack mouth opening displacement (CMOD).

monotonic CMOD in the experiments corresponds to a discontinuous loading history. On the other
hand, our crack length-controlled numerical simulations result in kink-free paths with nonmonotonic
CMOD but continuous loading histories.

5.3. Sheared beam

Figure 21 shows the geometry of a cantilever beam subjected to a shear end load j� j D 1. For
comparison with results from [50], we assume a plane strain condition and a Poisson ratio of
� D 0:25.

Similar to the previous examples, we constructed a universal mesh for the cracked domain that
is shown in Figure 21 and three refinements of it by subdivision. The coarsest mesh had hcrack �
0:5, and the ratio 
a=hcrack � 2 was maintained as a constraint for simulations. Parameters in
the meshing algorithm were chosen to be Nrelax D 8, Nsteps D 4, and Niter D 4. The radius for
computing the interaction integral was set to R D min¹0:75; d.an; @�/º. The simulation with the
coarsest universal mesh includes 20 loading steps.
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Figure 21. Geometry for a (left) clamped beam with a shear loading and (right) the corresponding
universal mesh.

Figure 22. Evolution of the crack and conformed universal mesh.

Figure 22 shows snapshots of the crack path and the conforming mesh around it at two different
instants. The paths computed with the four meshes are shown in Figure 23(a) and are qualitatively
similar to those in [50]. We observe that the paths seem to converge with refinement of the universal
mesh. Figure 23(b) examines the distance between the path computed with the most refined mesh
and the paths computed with the coarser meshes. Their differences decreases as O.h0:9/ and O.h0:8/
in theL2 andH 1 norms, respectively. Finally, Figure 24 shows that the loading historyC.`/ appears
to converge and that KII .`/ approaches zero, except at the initial kink.

5.4. Stiff inclusion

In this final example, we compute the evolution of an initially straight crack in a domain containing
a stiff circular inclusion. The geometry of the domain and the inclusion are depicted in Figure 25,
along with the prescribed Dirichlet boundary conditions and shear load. The material of the inclusion
is assigned an identical Poisson ratio as the matrix (� D 0:3) but has a Young’s modulus equal to
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(a) Crack paths (b) Convergence of error norms

Figure 23. Convergence of the crack path.

(a) Evolution of loading (b) Evolution of

Figure 24. Evolution ofKII .`/ and C.`/. The presence of a kink at `�`0 is evident from the nonzero value
of KII .`0/. This induces a discontinuity in C.`/ at ` D `0.

Figure 25. (Left) Geometry for a clamped beam with a shear loading and (right) a universal mesh constructed
for the interface before inserting the initial crack, following the refinement strategy outlined in the text.
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1000 times that of the matrix. We assume a state of plane strain and that the displacement field is
continuous across the interface (i.e., a perfectly bonded interface).

5.4.1. Adaptive refinement of the universal mesh. We utilize this example to demonstrate the pos-
sibility of periodically adapting the universal mesh during the evolution of the crack. As mentioned
previously, such refinement serves dual purposes. First, as the crack develops small features and/or
large curvatures, it is necessary to adapt the universal mesh if it does not satisfy the mesh size
requirements in the meshing algorithm. Local estimates of the required mesh size can be found in

Figure 26. Evolution of the crack, the mesh, and the quadtree for several time steps of the sheared block
with a stiff inclusion.
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[42]. Second, refinement in the vicinity of the propagating tip yields better approximations of the
stress intensity factors and presumably a more accurate evolution of the crack.

We construct adaptively refined universal meshes from adaptively refined quadtrees covering
the domain, which are then tiled with stencils of acute-angled triangles [47]. In fact, the univer-
sal meshes in all the previous examples were constructed in this way. Consequently, the resulting
meshes satisfy the acute conditioning angle requirement in the meshing algorithm, irrespective of
the location of the crack. Here, we additionally adapt the quadtree as the crack evolves.

In principle, a strategy to adapt the universal mesh should employ mesh size estimates required in
the meshing algorithm and a posteriori error estimates from computed solutions to guide refinement.
Instead, for simplicity, we choose an ad hoc strategy defined by the following rules:

(i) Squares in the quadtree (also referred to as its nodes) away from the crack and the matrix-
inclusion interface are assigned a size ı WD 1=2.

(ii) Squares in the vicinity of the crack and those near the matrix-inclusion interface have size
ı=16.

(iii) Squares contained by the ball of radius R around the crack tip are prescribed an even smaller
size of ı=32. These squares include the region over which interaction integrals are computed.

As the crack evolves, squares in the quadtree are subdivided on the basis of the aforementioned cri-
teria; sample snapshots of the quadtrees and the resulting universal meshes are shown in Figure 26.
Two features are apparent from such a refinement strategy. First, it permits adaption of the universal
mesh during each step of the evolution of the crack. Second, coarsening of the mesh is limited to
a small region around the propagating tip. Neither of these features are essential and may be over-
come with an alternate set of refinement criteria. For instance, it may suffice to periodically update
the universal mesh rather than at each update of the crack tip.

The simulation setup was similar to the previous examples. The radius for computing the interac-
tion integrals at the nth load step was chosen as R WD min¹0:75; d.an; @�[ �int/º where �int is the
interface between the matrix and the inclusion. The computed evolution reveals that the crack never
approaches too close to the boundary @� of the domain. Hence, the choice of R effectively reduces
to min¹0:75; d.an; �int/º, similar to the definition in the example in Section 5.2 with the perforations
in that example replaced by the inclusion here.

Deforming a universal mesh to accommodate the interface �int has not been discussed here. We
only mention that the requisite perturbations near the interface are for the most part identical to those
around a crack discussed in Section 4, while omitting perturbations around the crack tips. Parameters
Nrelax, Niter, and Nsteps in the meshing algorithm to accommodate the crack and the interface were
set to 8, 4, and 4, respectively.

We conclude this section noting the computed evolution of KII .`/ and C.`/ in Figure 27. As
observed in previous examples, we see that KII is close to zero, except at the initial kink.

(a) Evolution of loading history (b) Evolution of

Figure 27. Evolution of KII .`/ and C.`/.
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6. CONCLUDING REMARKS

We formulated a specific class of linear elastic fracture mechanics problems to model quasistatic
and kink-free propagation of cracks in two dimensions. Its numerical approximation relies on two
new ideas: robustly deforming a universal mesh to accommodate the crack propagating through and
accurately computing stress intensity factors for curvilinear cracks. The performance of the resulting
numerical scheme was examined through detailed examples and revealed favorable comparisons
with exact solutions and experimental data.

The numerical method was described in sufficient detail to facilitate a correct and efficient imple-
mentation. We have deliberately omitted comprehensive discussions of the meshing algorithm and
the calculation of stress intensity factors, referring instead to [37, 38, 41–43] for an explanation of
the rationale behind them, their analysis when possible, and extensive scrutiny through examples.

We also mention that the scheme is not limited to problems with smooth cracks. The latter
restriction stems essentially from the meshing algorithm. We expect to create algorithms permitting
piecewise smooth and bifurcated cracks in the near future. Preliminary results using exten-
sions of the scheme for simulating thermal cracking and hydraulic fracturing problems appear to
be promising.

We end the article noting that many challenges remain in the construction of models for frac-
ture, their analysis (cf. [25, 28, 52]) and validation through experiments, especially in three
dimensions. Numerical simulations play a crucial role in their study and their application to
practical engineering problems and have increasingly engaged engineers, mechanicians, mathe-
maticians, and physicists alike. The contributions of Ted Belytschko are especially noteworthy in
this regard.

APPENDIX A: INTERACTION INTEGRAL FOR A CURVED CRACK

This section summarizes a method to compute the stress intensity factors through an interaction
integral specially designed for a curved crack. More details can be found in [41]. The stress intensity
factors corresponding to a displacement field u are obtained from the following:

KI;II D
I
�
ˇ;ˇaux

I;II ; ı�
�

�Kaux
I;II

;

where ˇ WD ru, ˇaux
I;II is an auxiliary tensor field, ı� is an auxiliary vector field,

� D
2
�
1 � �2

�
E.1 � 2�/

and I is the interaction integral. This expression is valid in plane strain. In the sequel, we first define
ˇaux
I;II and ı� and then provide the definition of I.
The auxiliary field ˇaux

I;II is constructed so that

(i) If C is the elasticity tensor and � aux
I;II D C W ˇaux

I;II , then � aux
I;IIn D 0 on the crack faces.

(ii) Near the crack tip, ˇaux
I;II behaves like ruI;II , where uI;II is the displacement field of the

mode I; II asymptotic solution.

More precisely, let .r; #/ be crack-tip polar coordinates such that #min.r/ 6 # < #min.r/C 2	
for each r > 0, where #min.r/ is the angle at which the circle of radius r intersects the curvilinear
crack. Then, ˇaux

I;II .r; #/ is given by the following:

ˇaux
I;II .r; #/ D

X
k;lD1;2

�
gk.0

C/ � ruI;II .r; '.r; #// � gl.0
C/
�
gk.r/˝ gl.r/;
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Figure A.1. Isolines of the function ', which always lies between �	 and 	 .

where .g1;g2/ is a system of curvilinear right-handed orthonormal basis such that g1.r/ parallels
the direction tangent to the crack at a distance of r away from the crack tip, pointing toward the
crack tip. Here, '.r; #/ D # � #min.r/ � 	 so that the value of '.r; #/ is always between �	 and
	 . In Figure A.1, values of ' are plotted for a circular arc crack geometry. For a straight crack,
#min.r/ D �	 for all r > 0, and '.r; #/ D # .

The vector field ı� only depends on r and is defined as ı�.r/ D q.r/g1.r/, where q 2
C 1.Œ0;1// satisfies the following:

q.r/ D

8<
:
1; if r < RI ;

f .r/; if RI < r < R;

0 otherwise;

with f .r/ being a cubic polynomial, R is such that for any r < R, there exists a unique point on
�a with a distance of r away from the crack tip, and RI WD R=4.

The interaction integral for a curved crack is defined as follows:

IŒˇ;ˇaux; ı�� WD �

Z
BR.xt /

h�
ˇjk�

aux
jk;i � ˇ

aux
j i;k�jk � ˇj i�

aux
jk;k

�
ı�i C†ij ı�i;j

i
dV

where indicial notation and the summation convention on repeated indices have been adopted,
all components and partial derivatives are with respect to a Cartesian system of coordinates and
associated basis, and

†ij WD
1

2
ıij
�
�klˇ

aux
kl C �

aux
kl ˇkl

�
� ˇki�

aux
kj � ˇ

aux
ki �kj :

Interaction integrals are computed with numerical quadrature rules over the finite element mesh.
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