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We introduce a finite element method to compute equilibrium configurations of fluid 
membranes, identified as stationary points of a curvature-dependent bending energy 
functional under certain geometric constraints. The reparameterization symmetries in the 
problem pose a challenge in designing parametric finite element methods, and existing 
methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we 
exploit these symmetries by representing solution surfaces as normal offsets of given 
reference surfaces and entirely bypass the need for artificial constraints. We then resort 
to a Galerkin finite element method to compute discrete C1 approximations of the normal 
offset coordinate.
The variational framework presented is suitable for computing deformations of three-
dimensional membranes subject to a broad range of external interactions. We provide 
a systematic algorithm for computing large deformations, wherein solutions at subsequent 
load steps are identified as perturbations of previously computed ones. We discuss 
the numerical implementation of the method in detail and demonstrate its optimal 
convergence properties using examples. We discuss applications of the method to studying 
adhesive interactions of fluid membranes with rigid substrates and to investigate the 
influence of membrane tension in tether formation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Lipid bilayers are fluid-like membranes and a principal constituent in the boundaries of virtually all cells and intracellular 
organelles. While real biological structures are quite complex, lipid bilayers serve as a simple yet representative medium 
to understand important mechanical and chemical functions of cell and organelle boundaries. We are concerned here with 
designing finite element methods to simulate the mechanical behavior of lipid bilayers modeled as fluid membranes.

We adopt Helfrich’s continuum mechanical model to describe the bending elasticity of fluid membranes [1]. The model 
relies on (i) the thickness of fluid membranes being 2–3 orders of magnitude smaller than its lateral dimensions (nanome-
ters compared to microns), (ii) the fluidity of lipids within each monolayer, (iii) the large resistance of fluid membranes to 
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surface dilation, and (iv) their selective permeability to ions dissolved within the bulk fluid. The first observation permits 
describing a fluid membrane as a two-dimensional surface, akin to descriptions of thin elastic shells. The distribution of 
lipids along this surface is analogous to the field of directors within the context of a 1-director Cosserat shell theory. Lipid 
bilayers lack a reference configuration and offer no resistance to shear. More crucially, the fluidity assumption informs the 
constitutive law that the material symmetry group consists of local area (or density) preserving transformations. Conse-
quently, the constitutive relation is defined exclusively in terms of the membrane’s principal curvatures [2–4]. Helfrich’s 
model for the bending elasticity of fluid membranes follows from including terms up to second order in the principal cur-
vatures. The model is usually discussed and justified from more phenomenological perspectives [5] and has been favorably 
compared with numerous experiments [6,7]. Geometric constraints on the surface areas of fluid membranes and their en-
closed volumes play a crucial role in determining their equilibrium configurations. The rationale behind these constraints is 
discussed in Section 2. The corresponding Lagrange multipliers are interpreted as the surface tension in the membrane and 
the pressure in the enclosed fluid, respectively.

The Euler–Lagrange equations asserting stationarity of the bending energy of a fluid membrane are a system of nonlinear 
fourth-order partial differential equations in the coordinates describing its surface [8,9]. Explicit resolution of these equa-
tions to compute the surface coordinates is not feasible in general, although special solutions have been derived for specific 
geometries, loads and under the assumption of small deformations, see [6] and references therein. In the special case of 
axisymmetric deformations, we recover a system of ordinary differential equations relating the pressure, surface tension and 
coordinates of the generating curve. Such a system can be solved using shooting [8,10] or collocation methods [11].

To compute general three-dimensional deformations of fluid membranes however, numerical methods rely on the varia-
tional structure of the problem rather than the Euler–Lagrange equations. The description adopted for the membrane surface 
is a crucial choice in these methods— it may be described implicitly, say as the zero level set of a function, or parametri-
cally by choosing a local system of coordinates. Phase field methods are a prominent example of the former [12–14]. These 
methods explicitly compute an order parameter (the phase field), that undergoes a diffuse transition at the membrane sur-
face over a prescribed length scale (ε). Phase field models are favored for the simplicity they afford in accommodating 
complex surface topologies [15]. A recurring dilemma however concerns their computational efficiency, since the problem 
of computing a two-dimensional surface is replaced by one of computing a phase field in three dimensions. A naïve dis-
cretization entails an alarmingly expensive O(ε−3) degrees of freedom for the phase field. Adaptive refinement based on 
error estimators is indispensable in practice [16].

The second family of methods explicitly compute a parametric representation for the membrane [17]. The reparameteri-
zation symmetries of the bending energy and constraint functionals, a consequence of the fluidity of the membrane, present 
a fundamental difficulty in choosing a coordinate system. Cartesian coordinates are a convenient and ubiquitous choice, 
although they do not constitute a proper coordinate system. In a numerical implementation, choosing such an improper co-
ordinate system results in undesirable tangential motions, i.e., the so-called zero-energy-modes [18,19]. It is then necessary 
to perform mesh smoothing or node redistribution operations to retain the qualities of meshes used [20,21]. The situation 
is alleviated to some extent when viscosity of the fluid membrane is considered [22–24].

The dependence of the bending energy on membrane curvatures introduces additional challenges in designing numerical 
schemes. It necessitates C1 interpolations for the unknown fields in both phase field and parametric finite element methods. 
Lagrange-type elements afford only C0 discretizations and are hence inadequate for Galerkin approximations. Instead, mixed 
elements have been successfully used and analyzed [16,25–27]. Alternately, C1 finite element spaces have been constructed 
using spline-based functions [23,28,29], maximum-entropy approximants [14], and spectral representations [30]. Subdivision 
surfaces commonly used in computer graphics applications are also a promising alternative [18]. Nevertheless, challenges 
remain in constructing smooth interpolations on adaptively refined grids and in accommodating boundary conditions/con-
straints.

1.2. Scope of the paper

We present a variational framework for computing equilibrium configurations of fluid membranes undergoing large 
three-dimensional deformations. The main ingredients in the method are the following:

(i) We introduce a novel constraint-free parameterization for fluid membranes. The parameterization defines a membrane 
as a normal offset of a given reference surface. The normal offset is a scalar field and defines a proper coordinate for the 
membrane, while the role of the reference surface may be interpreted as that of an initial guess for the solution surface. 
In contrast with the aforementioned parametric finite element methods, the proposed parameterization entirely avoid 
the issue of zero-energy-modes.

(ii) The bending energy, constraint functionals, and their linearizations are straightforward to evaluate in the chosen coor-
dinate system. Equilibrium membrane configurations are then computed as stationary points of the constrained energy 
functional, without requiring the derivation of the Euler–Lagrange equations. Inextensibility of the membrane surface 
and conservation of the volume enclosed by it are enforced using scalar Lagrange multipliers.

(iii) The discrete variational principle is a Galerkin approximation. It consists in restricting the continuous formulation to a 
C1 finite element space for the normal offset coordinate. The discretized weak form is a system of nonlinear algebraic 
equations. We resolve them using a Newton-type method by deriving consistent tangent operators.
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Fig. 1. A simulation showing the spontaneous adhesive uptake of a sphero-cylindrical particle by a fluid membrane, computed using the proposed fi-
nite element method. The example serves to illustrate the capability of the proposed method to simulate large, three-dimensional deformations of fluid 
membranes.

(iv) The set of computable membrane shapes are restricted to lie in the tubular neighborhood of the reference surface 
to ensure their regularity. Hence solution surfaces are assumed to be sufficiently small perturbations of the reference 
surface. This requirement is however not because of any approximations or linearizations of the material constitutive 
behavior. Large membrane deformations are computed through a sequence of incremental deformations, while updating 
the choice for the reference surface at each step, see Fig. 1.

The reparameterization symmetries of the bending energy and geometric constraint functionals can be interpreted as the 
stationarity of these functionals with respect to tangential variations. This fact, which motivates our choice of coordinate, 
has been widely recognized in the literature [31–33]. However, it does not appear to have been exploited in numerical 
methods for computing equilibrium membrane configurations. Indeed, as noted in [31], the restriction to normal variations 
alone is not natural in mechanics.

The remainder of the paper is organized as follows. First we recall the continuum model describing the bending elasticity 
of fluid membranes and the associated geometric constraints in Section 2. We discuss the kinematic description of a surface 
using offset coordinates and the resulting continuous/discrete variational problems in Section 3 and Section 4. We provide 
detailed expressions for evaluating the weak forms and derive consistent tangent operators for general three-dimensional 
solutions.

In a useful class of experimentally-relevant applications, it is reasonable to restrict membrane configurations to be ax-
isymmetric. Such an assumption results in significant computational simplifications as well. In Section 6, we simulate the 
adhesive interaction of a vesicle with a rigid substrate, which is relevant to a commonly used experimental technique for 
characterizing the adhesion of vesicles to substrates. Then we consider the wrapping of a rigid spherical particle by a fluid 
membrane. Wrapping simulations are a useful step in studying the phenomenon of endocytosis, which is of interest to de-
signing nano-particles for drug delivery [34–37] as well in investigating their potential toxic effects [38–40]. In Section 7, 
we examine the role of surface tension in the formation of tethers in fluid membranes. Besides their biological significance, 
tether formation is routinely exploited in experimental measurement techniques [41].

Finally, we mention that most of the numerical examples presented here required fewer than 10 Newton iterations for 
convergence at each load step. With stiff external interactions, such as the potential used in Section 6.3, a few additional 
iterations were required. We also observed that Newton iterations converged (at least) quadratically close to the solution. 
Such efficiency compares favorably with commonly used Monte Carlo methods for instance, that entail performing multiple 
simulations each requiring millions of flips of degrees of freedom to identify an equilibrium configuration.

2. Curvature elasticity with geometric constraints

We begin with a brief description of the model for the bending elasticity of fluid membranes and the associated geo-
metric constraints.

2.1. Bending elasticity

The energy attributed to a configuration ϒ of a fluid membrane, presumed to be a sufficiently smooth surface in R3, is 
given by

W [ϒ] := κb

2

∫
ϒ

(H − C0)
2 dϒ + κG

∫
ϒ

K dϒ, (1)

where H and K are the mean and Gaussian curvatures, C0 is termed a “spontaneous curvature”, and κb and κG are the 
bending and Gaussian rigidities. Throughout this article, we shall ignore the possibility of membranes undergoing topology 
changes (e.g., fusion and rupturing). Consequently, the integral of the Gaussian curvature is a constant [42] and hence the 
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second term in (1) is ignored. The spontaneous curvature C0 introduces an asymmetry, to reflect the distributions of certain 
lipids in the bilayer structure. For simplicity, we assume that C0 = 0 throughout. We are hence left with the functional

�B [ϒ] := κb

2

∫
ϒ

H2 dϒ, (2)

which is also known as the Willmore energy. A few aspects of (2) are worth highlighting. First, the conspicuous absence 
of the thickness of the membrane is to be expected, since the thickness of biological membranes is typically many or-
ders of magnitude smaller than their extent (nanometers compared to microns). Second, there is no information regarding 
the bilayer architecture of biological membranes/vesicles. Considering the in-plane deformations of each monolayer would 
introduce energetic contributions arising from gradients in density distributions of lipids in each layer, and in particular, 
signatures of the bilayer structure [6,43]. However, the bending rigidity is known to be much smaller than the in-plane 
elastic compression modulus, leading us to omit the latter. Finally, the absence of any resistance to shear in (2) reflects the 
distinction between fluid membranes and solid shells.

2.2. Geometric constraints for vesicles

Equilibrium shapes of fluid membranes are postulated to manifest as the result of a competition between the bending 
energy and geometric constraints on its surface area/volume. The rationale behind assuming a constant area, namely∫

ϒ

1 dϒ = constant, (3)

comes from the observation that the low concentrations of free lipids in biological and experimental systems preclude the 
possibility of lipids being added or removed over any significant time scale. In addition to maintaining a roughly optimal 
number of lipids, a constant surface area also reflects the large resistance to in-plane elastic deformation. Constraint (3) ex-
plicitly distinguishes the bending elasticity of fluid membranes from that of material interfaces, whose behavior is governed 
predominantly by surface tension.

The constraint of constant volume,∫
�

1 d� = constant, (4)

where � is the volume bound by (a closed surface) ϒ , is also sometimes assumed in the study of vesicles. The justification 
in this case comes from the impermeability of vesicle walls to ions/sugars dissolved in the ambient and enclosed fluids. 
Changes in volume of the vesicle would create osmotic pressures that would be too large to be sustained by just the 
elasticity of its boundary.

The Lagrange multipliers used to impose constraints (3) and (4) are interpreted as the membrane tension and pressure 
differential respectively.

2.3. External interactions

In addition to prescribed boundary conditions, we consider external interactions of the form

�F [ϒ] :=
∫
ϒ

μdϒ, (5)

where μ : R3 → R represents the intensity of an external potential. A broad range of experimentally-relevant interactions 
are conveniently represented using (5). We provide specific examples for the case of adhesive interactions in Section 6.

3. Variational formulation with offset surfaces

We introduce a model problem for computing the parametric representation of an equilibrium configuration of a three-
dimensional fluid membrane. To arrive at a well-posed problem, we restrict the family of admissible solutions to consist of 
normal offsets of a given reference surface. The resulting variational problem is free from artificial constraints and amenable 
to a simple Galerkin approximation discussed in Section 4. We provide detailed expressions to evaluate the weak form and 
derive the corresponding consistent tangent operators to be used in iterative numerical solution schemes.

3.1. A model problem

Consider the family of regular orientable surfaces parameterized over a given bounded set A ⊂ R
2

G := {γ = {ϕ(ξ) : ξ ∈ A},ϕ ∈ V}, (6)
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Fig. 2. Geometry of a membrane ϒ represented as the normal offset of a reference surface ϒ0.

where we assume that V ⊂ [H2(A)]3 incorporates the conditions for regularity, orientability and prescribed boundary condi-
tions, and H2(A) is the Sobolev space of functions on the set A. In general, and for closed surfaces in particular, a collection 
of charts is required in (6). The following discussion is easily adapted to the case of multiple charts and in favor of notational 
simplicity, we assume a single chart in (6).

We consider a model problem for computing ϒ ∈ G that is a stationary point of �B + �F subject to the constraint of a 
given surface area A0:

Find ϒ = {ϕ(A)} ∈ G, λA ∈R such that 〈δ�[ϕ, λA], (δϕ, δλA)〉 = 0 ∀δϕ ∈ V∂ , δλA ∈R, (MP)

where V∂ is the set of admissible variations of mappings in V,

�[ϕ, λA] := �B [ϕ] + �F [ϕ] + λA (�A[ϕ] − A0) , (7)

and the linearization of � is defined as

〈δ�[ϕ, λA], (δϕ, δλA)〉 := lim
ε→0

d

dε
�[ϕ + εδϕ, λA + εδλA]. (8)

For brevity, we omit the volume constraint in (MP) and in subsequent discussions. The Lagrange multiplier λA is introduced 
to enforce the constraint �A = A0. Note that we have implicitly replaced the argument ϒ of the functionals �B , �A and �F

in (2)–(5) by the parameterization ϕ of ϒ .
Before proceeding, we emphasize that (MP) identifies stationary points without regard for stability. That is, the identified 

solutions may not be minima (local or global) of the energy functional.

3.2. Restricted set of admissible solutions: offset surfaces

It is appealing to identify the solution ϒ of (MP) by computing its parameterization ϕ ∈ V. Nevertheless, it is evident that 
(MP) does not yield a unique choice for ϕ since the functional � in (7) and the constraint �A = A0 depend intrinsically on 
the set ϒ . To wit, if ψ :A →A is any smooth automorphism on A, then both ϕ and ϕ ◦ψ are admissible parameterizations 
for ϒ . Consequently, resolving (MP) by computing, say, the three Cartesian coordinates for ϒ as independent fields over A
results in an ill-posed problem. Instead, we restrict the set of admissible solution surfaces by seeking parameterizations of 
a specific form, namely, by requiring that admissible solutions be normal offsets of a given surface.

Let ϒ0 ⊂R
3 be the surface

ϒ0 := {ϕ0(ξ) : ξ ∈ A,ϕ0 ∈ V ∩ [H3(A)]3}. (9)

Consider the set

G(ϒ0) := {γ = {ϕ0(ξ) + w(ξ)n0(ξ) : ξ ∈ A}, γ ⊂ N (ϒ0), w ∈ H2
0(A)}, (10)

where n0 is the unit normal to ϒ0 and N (ϒ0) is the tubular neighborhood of ϒ0. As illustrated in Fig. 2, a surface γ ∈ G(ϒ0)

is a normal perturbation of ϒ0 and is defined by the parameterization

ϕ(ξ) := ϕ0(ξ) + w(ξ)n0(ξ), ξ ∈ A. (11)
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Fig. 3. An offset surface ϒ is defined as a normal perturbation of a reference surface ϒ0. For the purpose of visualization, only sections of these surfaces 
are depicted here. Figure (b) shows that when the normal perturbation w is too large compared to the local curvature of ϒ0, the resulting offset surface is 
no longer contained in the tubular neighborhood N (ϒ0) of ϒ0 and may fail to be regular.

For this reason, we say that γ ∈ G(ϒ0) is a normal offset of ϒ0. We refer to ϒ0 as the reference surface for γ , and to w as 
the offset coordinate.

A few remarks are pertinent here.

(i) The higher regularity required of ϒ0 and the conditions ϕ0 ∈ V, w ∈ H2
0(A) imply that G(ϒ0) ⊆ G . In general, G(ϒ0) is 

strictly contained in G .
(ii) It is possible to identify the surfaces in G that belong to G(ϒ0). To this end, let

GN := {γ ∈ G : γ ⊂ N (ϒ0)}, (12)

which consists of surfaces in G that lie in the tubular neighborhood of ϒ0. It follows from definitions (10) and (12)
that

γ ∈ G(ϒ0) ⇒ γ ∈ GN. Hence G(ϒ0) ⊆ GN. (13)

Conversely, suppose that γ ∈ GN. Using the assumption γ ⊂N (ϒ0), we know that for each ξ ∈A, there exists a unique 
scalar w(ξ ) such that ϕ0(ξ) + w(ξ )n0(ξ) ∈ γ , see [42, Chapter 2]. Therefore, it follows that

γ ∈ GN ⇒ γ ∈ G(ϒ0). Hence GN ⊆ G(ϒ0). (14)

From (13) and (14), we conclude that GN = G(ϒ0).
(iii) The offset coordinate for a surface γ ∈ GN as a member of G(ϒ0) is in fact easy to compute. Denoting the Euclidean 

distance in R3 by d(·,·), let

ξ0(x ∈ γ ) = arg min
ζ∈A d(x,ϕ0(ζ )).

We understand ξ0(x) to be the parametric coordinate of the closest point projection of x onto ϒ0. It is well defined 
owing to the regularity of ϒ0 and the assumption x ∈ γ ⊂N (ϒ0), see [42]. Then the offset W (x) at x ∈ γ is given by

W (x ∈ γ ) = {x − ϕ0(ξ0(x))} · n0(ξ0(x)).

3.3. Variational formulation restricted to offset surfaces

Given a reference surface ϒ0, we consider the restriction of (MP) to surfaces in G(ϒ0). Admitting the abuse of notation 
�[w, λA] := �[ϕ0 + w n0, λA], we have

Given ϒ0 = {ϕ0(A)}, find (w, λA) ∈ H2
0(A) ×R such that:

〈δ�[w, λA], (δw, δλA)〉 = 0 ∀(δw, δλA) ∈ H2
0(A) ×R.

(P)

As understood in (P), we shall henceforth identify �A[w] and �F [w] with �A[ϕ0 + w n0] and �F [ϕ0 + w n0], respectively.
We argued previous in Section 3.2 that each surface in G(ϒ0) is defined by a unique offset coordinate w in (11). Hence 

(P) is recovered from (MP) by restricting the class of admissible solution surfaces to the subset G(ϒ0) of G . The relation 
between problems (MP) and (P) depends crucially on the choice of the reference surface ϒ0. If ϒ0 is chosen such that the 
solution ϒ of (MP) is contained in N (ϒ0), then ϒ is a solution of (P) as well. This in turn requires that ϒ be a sufficiently 
small perturbation of ϒ0, see Fig. 3. In this sense, we interpret ϒ0 as a reasonable initial guess for the solution of (MP). In 
Section 4.4, we discuss computing solutions that are large perturbations of an initial guess ϒ0 by considering a sequence of 
incrementally loaded problems and updating the choice of the reference surface at each load step.
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3.4. Evaluation of the weak form

We provide detailed expressions to evaluate the weak form (P). We provide an intentionally terse description of the 
necessary geometric preliminaries and refer to [42] for details. Throughout, we shall denote the Cartesian coordinates of 
ξ ∈ R

2 by (ξ1, ξ2). The scalar and vector products in R3 are denoted by (·) and (×), respectively.

3.4.1. Geometric preliminaries
Let γ ∈ G(ϒ0) be a surface with parameterization

ϕ(ξ) = ϕ0(ξ) + w(ξ )n0(ξ), ξ ∈ A. (15)

The tangent plane to γ at ϕ(ξ) is spanned by the basis {a1, a2} defined as

aα := ϕ,α = ϕ0
,α + w,αn0 + wn0

,α, α = 1,2 (16)

where (·),α equals the derivative ∂(·)/∂ξα . The unit normal to γ is given by the Gauss map

n = a1 × a2

‖a1 × a2‖ . (17)

The components of the metric tensor g and the coefficients of the second fundamental form L in the basis {a1, a2} are given 
by

gαβ = aα · aβ, Lαβ = aα,β · n, 1 ≤ α,β ≤ 2. (18)

To compute the differential of the Gauss map, we use the components of the shape operator S in the {a1, a2} basis

n,α =
2∑

β=1

Sαβaβ, where S := −L g−1, (19)

where g−1 is the (matrix) inverse of g. We may now evaluate the area element JdA of γ and its mean curvature H as

J = √
det(g), H = 1

2
Tr(S), (20)

where det and Tr are the (matrix) determinant and trace operators, respectively. Finally, we mention that the components 
of the differential of the Gauss map n0

,α of the reference surface ϒ0 appearing in (16) can itself be evaluated using the 
shape operator of ϒ0.

3.4.2. Expressions for the weak form
Adopting the shorthand δw (·) := 〈(·), δw〉 for an admissible variation δw , the weak form in (P) is recast as

〈δ�[w, λA], (δw, δλA)〉 = δw�B [w] + δw�F [w] + λAδw�A[w] + δλA(�A[w] − A0). (21)

To evaluate the linearizations of functionals �B , �A and �F in (21), we use definitions (2), (3), (5) and (8) to get

δw�B [w] = δw

⎛
⎝κb

2

∫
A

H2 J dA

⎞
⎠ = κb

2

∫
A

(
2HJ δw H + H2δw J

)
dA, (22a)

δw�A[w] = δw

⎛
⎝∫

A

J dA

⎞
⎠ =

∫
A

δw J dA, (22b)

δw�F [w] = δw

⎛
⎝∫

A

μ[ϕ]JdA
⎞
⎠ =

∫
A

(
∂μ

∂ϕ
δwϕ J + μδw J

)
dA. (22c)

Linearizations of the geometric quantities appearing in (22) are in turn computed using the following cascade of expressions 
derived directly from definitions (15)–(20).
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δwϕ = δw n0,

δw aα = δw,α n0 + δw n0
,α,

δw aα,β = δw n0
,αβ + δw,α n0

,β + δw,β n0
,α + δw,αβ n0,

δw gαβ = δw aα · aβ + δw aβ · aα,

δw g−1 = −g−1 δw g g−1,

δw(a1 × a2) = δw a1 × a2 + a1 × δw a2,

δw J = δw(‖a1 × a2‖) = δw(a1 × a2) · n,

δw n = 1

J
(δw(a1 × a2) − δw J n) ,

δw Lαβ = δw aα,β · n + aα,β · δw n,

δw S = −δw L g−1 − L δw g−1,

δw H = 1

2
Tr(δw S).

(23)

In (23), we have repeatedly used the linearity of the operator δw , the chain rule, and the commutativity of δw and Tr. To 
compute the linearization of g−1, we use

gg−1 = Identity ⇒ δw(gg−1) = 0 ⇒ δw g g−1 + g δw g−1 = 0 ⇒ δw g−1 = −g−1 δw g g−1,

while the expression for δw n is computed using

Jn = a1 × a2 ⇒ δw J n + J δw n = δw(a1 × a2) ⇒ δw n = 1

J
(δw(a1 × a2) − δw J n) . (24)

Owing to the structure of the parameterization chosen in (15), it is possible to provide a geometric interpretation for some 
of the linearizations in (23). For the purpose of numerical computations however, we will not make specific use of such 
insights and therefore omit their discussion here.

3.5. Linearization of the weak form

The Galerkin discretization of the weak form (P) (equivalently (21)) yields a system of nonlinear algebraic equations for 
the degrees of freedom of the offset coordinate and the Lagrange multiplier. For its resolution using a Newton-type method, 
we require the linearization of the weak form. We record necessary expressions here.

Analogous to (8), the linearization of 〈δ�[w, λA ], (δw, δλA)〉 along (�w, �λA) ∈ H2
0(A) ×R is given by

〈δ2�[w, λA], (δw, δλA), (�w,�λA)〉 := lim
ε→0

d

dε
〈δ�[w + ε�w, λA + ε�λA], (δw, δλA)〉. (25)

Employing the shorthand �w (·) := 〈(·), �w〉, using (21) in (25), and noting that (�w, �λA) is independent of the variation 
(δw, δλA), we get

〈δ2�[w, λA], (δw, δλA), (�w,�λA)〉
= �w(δw�B [w]) + �w(δw�F [w]) + λA�w(δw�A[w]) + δλA(�w�A[w]) + �λAδw�A[w]. (26)

The penultimate pair of terms in (26) are readily evaluated using the expressions derived in Section 3.4.2. The remaining 
terms are evaluated using (22) in definition (25),

�w(δw�B [w]) = κb

∫
A

[
(�w H δw H + H�wδw H) J + (�w J δw H + δw J�w H)H + H2

2
�w(δw J)

]
dA, (27a)

�w(δw�A[w]) =
∫
A

�w(δw J)dA, (27b)

�w(δw�F [w]) =
∫
A

[
�wϕ

∂2μ

∂ϕ2
δwϕ J + ∂μ

∂ϕ
(δwϕ �w J + �wϕ δw J)

]
dA. (27c)

In (27c), we have used the independence of variations δw and �w to infer �w(δwϕ) = �w(δw w) n0 = 0. The same rea-
soning also reveals that �w (δw aα) = �w(δw aα,β) = 0 for each 1 ≤ α, β ≤ 2.
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To evaluate (27) and in turn (26), it remains to compute the second variations �w (δwϕ), �w(δw J) and �w(δw H) ap-
pearing in (27). From definitions (15)–(20) and their linearizations (23), we have

�wδw gαβ = δw aα · �w aβ + �w aα · δw aβ,

�wδw(g−1) = − (
�w g−1 δw g g−1 + g−1 �wδw g g−1 + g−1δw g�w g−1

)
,

�wδw(a1 × a2) = δw a1 × �w a2 + �w a1 × δw a2,

�wδw J = �wδw(a1 × a2) · n + δw(a1 × a2) · �w n,

�wδw n = 1

J
(�wδw(a1 × a2) − �wδw J n − δw J�w n − �w Jδw n) ,

�wδw Lαβ = δw aα,β · �w n + �w aα,β · δw n + aα,β · �wδw n,

�wδw S = − (
�wδw L g−1 + L�wδw g−1 + δw L�w g−1 + �w L δw g−1

)
,

�wδw H = 1

2
Tr (�wδw S) .

(28)

To compute �wδw n in (28), we use a calculation similar to (24),

a1 × a2 = Jn ⇒ �wδw(a1 × a2) = �wδw J n + J�wδw n + δw J�w n + �w J δw n. (29)

4. Galerkin finite element approximation

Let V ⊂ H2
0(A) be a finite dimensional subspace (the finite element space). A Galerkin approximation of (P) is the 

problem:

Given ϒ0 = {ϕ0(A)}, find (wh, λh) ∈ V ×R such that:

〈δ�[wh, λh], (δwh, δλA)〉 = 0 ∀(δwh, δλh) ∈ V ∂ ×R,
(G)

where V ∂ is the space of admissible variations of functions in V . Without loss of generality, let V = Span{Na : A → R,

1 ≤ a ≤ n} and dim(V ) = n. Problem (G) is a system of n + 1 nonlinear algebraic equations of the form

R[wh, λh] :=
[

F[wh] + f[wh] + λhG[wh]
�A[wh] − A0

]
= 0. (30)

The n + 1 unknowns in (30) are the n degrees of freedom dual to the basis {Na}a for V , and the Lagrange multiplier λh . The 
residual R is an (n + 1) × 1 column vector, while the n × 1 column vectors F, f and G have components

Fa[wh] := 〈δ�B [wh], Na〉, (31a)

fa[wh] := 〈δ�F [wh], Na〉, (31b)

Ga[wh] := 〈δ�A[wh], Na〉, 1 ≤ a ≤ n. (31c)

The arguments wh and λh in (30) and (31) explicitly denote dependence on wh and λh . That (30) is a realization of (G) for 
a specific choice of variations is evident from

Ra[wh, λh] =
{ 〈δ�[wh], (Na,0)〉 for 1 ≤ a ≤ n,

〈δ�[wh], (0,1)〉 for a = n + 1.
(32)

The splitting of terms in (30) is a chosen to closely reflect (21). At a given (admissible) solution guess (wh, λh), R is 
evaluated using the expressions derived in (22) for each of the terms in (31).

To compute (wh, λh) satisfying (30), we resort to a Newton method. Let K[wh], L[wh] and M[wh] be the n × n matrices 
with components

Kab[wh] := 〈δ2�B [wh], Na, Nb〉, (33a)

Lab[wh] := 〈δ2�F [wh], Na, Nb〉, (33b)

Mab[wh] := 〈δ2�A[wh], Na, Nb〉, 1 ≤ a,b ≤ n, (33c)

which are the consistent linearizations of F, f and G, respectively. The matrices K, L and M are evaluated using the choice of 
variations indicated in (33) and the expressions in (27). The argument wh in (33) again highlights the fact that the tangent 
matrices are configuration dependent, which is a consequence of the nonlinearity of the problem. A Newton method to 
solve (30) consists in the iterative two-step procedure
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Solve: A[wh, λh]
[

�w
�λ

]
= R[wh, λh], (34a)

Update: (wh, λh) ← (wh, λh) − (�wh,�λ), (34b)

where �wh =
n∑

a=1

�wa Na and A[wh, λh] =
[

K[wh] + L[wh] + λhM[wh] G[wh]
G[wh]T 0

]
. (34c)

The (n + 1) × (n + 1) matrix A is the linearization of the residual R. Observe that the definition of A in (34c) is a realization 
of (26) for a specific choices of variations (δw, δλA) and (�w, �λA), namely,

Aab[wh, λh] =

⎧⎪⎪⎨
⎪⎪⎩

〈δ2�[wh, λh], (Na,0), (Nb,0)〉 for 1 ≤ a,b ≤ n,

〈δ2�[wh, λh], (Na,0), (0,1)〉 for 1 ≤ a ≤ n,b = n + 1,

〈δ2�[wh, λh], (0,1), (Nb,0)〉 for a = n + 1,1 ≤ b ≤ n,

〈δ2�[wh, λh], (0,1), (0,1)〉 for a = b = n + 1.

(35)

Algorithm 1 below summarizes the steps to solve (30) to compute wh and λh . Therein, we implicitly assume that the 
given reference surface ϒ0 is maintained fixed across Newton iterations. It is indeed possible, and sometimes necessary, to 
update the choice of ϒ0 either periodically, or at the end of each iteration. Such updates are incorporated in Algorithm 2. 
The simple two-step strategy in (34) is used for solution updates and in all our numerical examples. It can be substituted 
with more sophisticated line search methods [44]. For simplicity, we take the initial guesses for wh and λh to be zero. 
As indicated in the algorithm as well as in all our simulations, we choose the �2-norm for checking convergence of the 
residual.

4.1. Spline-based finite elements

The regularity requirement w ∈ H2
0(A) in (P) stems from the dependence of the bending energy on the mean curva-

ture. This in turn necessitates constructing finite dimensional subspaces of H2
0(A) in problem (G). Requiring a continuously 

differentiable interpolation for the normal offset immediately precludes the possibility of using piecewise polynomial La-
grange interpolations for wh in (G). It is possible to use mixed finite element methods employing independent interpolations 
for wh and its derivatives, see [16,25,26]. Instead, we adopt tensor-product b-spline functions for this purpose and assume 
for simplicity that A = I × I, where I := [0, 1]. First we recall a few essential facts about one-dimensional B-splines.

4.1.1. B-spline functions
Let p ≥ 0 be an integer and T be the knot vector

T = {t−p < t−p+1 < . . . < 0 = t0 < t1 < . . . < tm = 1 < tm+1 < . . . < tm+p}, (36)

consisting of an increasing sequence of real numbers. The knot spacing h := maxm+p−1
i=−p (ti+1 − ti) denotes the maximum 

length of an interval in T. The ith b-spline function of degree p is denoted by Ni,p and is defined by the recursive relation

Ni,0(t) =
{

1 if ti ≤ t ≤ ti+1,

0 otherwise,
and (37a)

Ni,p(t) = t − ti

ti+1 − ti
Ni,p−1(t) + ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t), (37b)

where i = 0 to m + p − 1; see Fig. 4. Efficient algorithms to evaluate b-spline functions and their derivatives have been 
devised and implemented in commonly used software libraries [45].

The choice of degree p and knot vector T define the finite dimensional space of functions

BT,p := Span{Ni,p : I →R}m+p−1
i=0 . (38)

Of particular significance for using b-spline functions as finite element basis functions are the observations that for each 
i = 0 to m + p − 1:

P1. Ni,p is a piecewise polynomial of degree p. In particular, {Ni,0}i are piecewise constants while {Ni,1}i are the familiar 
piecewise linear hat functions.

P2. Ni,p is compactly supported in the interval [ti+1−p, ti+1]. Consequently, there are at most p +1 non-zero basis functions 
in the interval [ti, ti+1].

P3. B-spline functions are non-negative and form a partition of unity, i.e., Ni,p(t) ≥ 0 and 
∑

i Ni,p(t) = 1 for any t ∈ I.
P4. The function Ni,p is p − k times differentiable at a knot having multiplicity k, and is smooth elsewhere.
P5. The vector space BT,p has dimension m + p.
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Algorithm 1: Solution with given reference surface

Input: Reference surface ϒ0

Input: Tolerance ε for convergence
Initial guess: (wh, λh) ← 0
converged ← false
while converged = false do

Assemble residual vector R := R[wh, λh]
if ‖R‖�2 < ε then

converged ← true
else

Assemble tangent operator A := A[wh, λh]
Solve: A [�w �λh ]T = R

Update solution: (wh, λh) ← (wh, λh) − (�wh, �λh), where �wh = ∑
a �wa Na .

end
end
return (wh, λh)

Fig. 4. Plots (a) and (b) show cubic b-spline basis functions defined using knot vectors {−0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6} and {0, 0, 0, 0,

0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}, respectively. Observe that basis functions are non-negative and sum to 1 at each point. Unlike (a), repeated knots in (b) result
in N0,3(0) = 1 and N6,3(1) = 1, which is useful when imposing Dirichlet boundary conditions.

Property P4 reflects the principal advantage of b-splines over Lagrange polynomials in problem (G). B-spline functions 
with high order continuity are achieved by merely increasing the degree p. Choosing p ≥ 2 ensures that BT,p ⊂ C1(I), 
which should be compared to C0 continuity possible with Lagrange basis functions. Besides P1–P5, b-splines have excellent 
approximation properties [46]. We note that one-dimensional basis functions with C1 continuity can also be defined using 
Hermite polynomials, but their construction is necessarily more tedious.

4.1.2. B-splines as finite element basis functions
B-spline functions facilitate a natural construction of finite element subspaces of H2

0(A), especially since we have as-
sumed a rectangular parametric domain A = I × I. Let T be as in (36) and let

S := {s−p < s−p+1 < · · · < 0 = s0 < s1 < · · · < sn = 1 < sn+1 < · · · < sn+p}. (39)

For each 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, define the finite element Ei j as the 3-tuple [47]

Ei j :=
(

[ti, ti+1] × [s j, s j+1], Span{Nk,p(x)N�,p(y) : i ≤ k ≤ i + p, j ≤ � ≤ j + p},

{σk� : i ≤ k ≤ i + p, j ≤ � ≤ � + p}
)

, (40)

consisting of an element geometry (a rectangle), the basis functions spanning V := BT,p ⊗BS,p , and the corresponding set of 
degrees of freedom. The degrees of freedom {σk� : 0 ≤ k ≤ m + p − 1, 0 ≤ � ≤ n + p − 1} span the dual of V and are defined 
by the relation

f ∈ V ⇒ f (x, y) =
m+p−1∑ n+p−1∑

σi j( f )Ni,p(x)N j,p(y), x, y ∈ I. (41)

i=0 j=0
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Fig. 5. Finite element approximation of a planar fluid membrane using a non-planar reference surface.

Notice that we have used the same degree p in the definition of tensor product space V . It is certainly possible, perhaps 
motivated by features of the solution, to construct V as a tensor product of b-spline function spaces of distinct degrees p
and p′ , i.e., as BT,p ⊗BS,p′ . Nevertheless, all our numerical examples are computed using p = p′ .

An important distinction between finite elements defined using b-splines in (40) and Lagrange-type elements lies in the 
interpretation of the degrees of freedom. In the latter, degrees of freedom conveniently coincide with function values at a 
specific set of points (nodes). This is no longer the case with (40), which is a consequence of the fact that b-spline functions 
are in general non-interpolatory. Alternately, we may think of {σi j( f )} as a set of generalized coordinates for f ∈ V rather 
than as a set of nodal values. Consequently, boundary conditions on functions and their derivatives are imposed as linear 
constraints. In Fig. 4(b), we illustrate the possibility of recovering interpolatory b-spline functions by repeating knot vectors. 
This is a convenient feature when imposing boundary conditions.

4.2. An illustrative example

We present an example to demonstrate using Algorithm 1 to solve problem (MP). For simplicity, we assume that there 
are no external interactions (�F = 0) and neglect area/volume constraints (λA = λV = 0). With the standard Cartesian 
coordinate system {e1, e2, e3} for R3, we consider boundary conditions⎧⎨

⎩
ϕ · ex = ξ1 on ξ1 = 0,1
ϕ · ey = ξ2 on ξ2 = 0,1
ϕ · ez = ∂(ϕ · ez)/∂n = 0 on ∂A.

(42)

The solution of (MP) satisfying (42) is the planar surface ϒ =A × {0}. In fact, since ϒ has zero mean curvature, it achieves 
the minimum bending energy �B [ϒ] = 0.

To define the restriction (P) of (MP), we choose the reference surface ϒ0 depicted in Figs. 5(a) and 5(b). We construct it 
as a tensor-product cubic b-spline surface parameterized over A with 7 × 7 = 49 control points. Hence

ϕ0(ξ) :=
∑

0≤i, j≤6

p0
i j Ni,3(ξ1)N j,3(ξ2), where p0

i j ∈R
3, ξ ∈ A.

The control points {p0
i j}i, j are chosen such that ϕ0 satisfies boundary conditions (42) and ϒ0 is non-planar. The latter choice 

is intentional, so that we can examine the performance of Algorithm 1 for a problem in which the exact solution is known. 
The exact solution for the offset coordinate is given by

w =
(

ϕ0 · ez

n0 · ez

)
n0 on A, (43)

which is well defined since n0 · ez > 0 on A by choice of ϒ0. Additionally, the choice of control points {p0
i j}i, j is such that 

the maximum curvature of ϒ0 is sufficiently small. This is ensured by controlling the parameter �z0 indicated in Fig. 5(b). 
As a result, we have ϒ ∈N (ϒ0).
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Table 1
In (a), we show (approximately quadratic) convergence of the residual with the number of Newton iterations for the 
simulation depicted in Fig. 5. In (b), we report the number of Newton iterations required to achieve ‖R‖ < 10−10, 
the bending energy of the finite element solution, and the L2(A)-norm of the error as the knot vector is refined.

Iteration ‖R‖�2

1 6.014 × 100

2 4.990 × 100

3 1.224 × 10−1

4 1.223 × 10−2

5 1.403 × 10−6

6 2.744 × 10−14

(a)

# knots # Iterations Energy �B [wh] ‖w − wh‖L2(A)

5 × 5 7 8.999 × 10−2 4.271 × 10−3

10 × 10 6 2.147 × 10−2 8.205 × 10−4

20 × 20 6 6.1 × 10−3 2.382 × 10−4

40 × 40 7 1.511 × 10−3 6.033 × 10−5

80 × 80 7 3.769 × 10−4 1.513 × 10−5

(b)

Fig. 6. Since the curvature of the reference surface ϒ̂0 is too large, the exact solution does not lie in its tubular neighborhood. This is evident from 
intersections (non-injectivity) observed in the vector field wn0.

Fig. 5(c) depicts the Galerkin approximation for the offset coordinate computed using quadratic b-spline functions (p = 2)

with knot vectors T = S and n = m = 10 uniformly spaced knots, and satisfies boundary conditions wh = ∂ wh/∂n = 0 on ∂A. 
Since the exact solution w in (43) does not belong to the finite element space V = BT,2 ⊗ BT,2, the computed field wh is 
only an approximation of w . The �2-norm of the residual R as a function of the number of Newton iterations for this 
calculation is recorded in Table 1(a). We observe that the residual converges approximately quadratically. Table 1(b) reports 
the number of Newton iterations required to achieve ‖R‖�2 < 10−10 as a function of the number of knots n (analogous to 
mesh refinement). We observe that Newton iterations consistently converge in fewer than 7 iterations. We also find that 
the bending energy of the computed solution and the L2(A)-norm of the error (w − wh) converge to zero with refinement 
of the knot vector.

We conclude this example with a remark on the choice of the reference surface. The choice of ϒ0 in Fig. 5 ensures 
that the exact solution lies in N (ϒ0). Fig. 6 illustrates the consequence of choosing the reference surface ϒ̂0 for which 
ϒ �⊂ N (ϒ̂0). The surfaces ϒ̂0 and ϒ0 identical except that the parameter �z0 for ϒ̂0 is twice that of ϒ0. Consequently, 
ϒ̂0 has a larger curvature and a correspondingly smaller radius for its tubular neighborhood. Then, as depicted in Fig. 6, 
the exact solution A × {0} cannot be reproduced as a regular surface while using an offset parameterization. In numerical 
experiments, we found that Newton iterations failed to converge with reference surface ϒ̂0. However, we caution that 
non-convergence of Newton iterations is not a reliable indicator of a bad choice for the reference surface.

4.3. B-spline reference surfaces

In principle, the reference surface ϒ0 can be specified in any parametric form that satisfies (9). Nevertheless, it is 
desirable to devise a systematic construction for them, based on the expected features of the solution so that wh has both 
small magnitude as well as small gradients.

As done in the previous example, we construct reference surfaces as tensor-product b-spline surfaces specified by 
(i) a degree q ≥ 3, (ii) a pair of knot vectors T0 := {t−q, . . . , tm′+q}, S0 := {s−q, . . . , sn′+q}, and (iii) a set of control points 
{p0

ab ∈R
3 : 0 ≤ a ≤ m′ + q − 1, 0 ≤ b ≤ n′ + q − 1}. Hence ϒ0 is the surface with parameterization

ϕ0(ξ) :=
m′+q−1∑

a=0

n′+q−1∑
b=0

p0
ab Na,q(ξ1)Nb,q(ξ2), ξ ∈ A. (44)

Control points {p0
ab}a,b are chosen to satisfy boundary conditions prescribed for the solution. Choosing the degree q ≥ 3

ensures that ϕ0 ∈ [H3(A)]3. The degree and knot vectors for ϒ0 can be chosen independently of those defining the finite 
element space V . A judicious choice q = p + 1 is suggested by (11), so that wh and n0 have comparable smoothness.

4.4. Incremental solutions

Constructing reference surfaces as b-spline surfaces serves a useful role when studying a one-parameter family of prob-
lems {P�}� , where each problem P� is of the form (P). The parameter � may denote, for instance, the evolution of external 
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Algorithm 2: Incremental solution algorithm

Input: B-spline reference surface ϒ0
0 as ϕ0

0(ξ) =
∑

0≤a≤n′+q−1
0≤b≤m′+q−1

p0
ab Na,q(ξ1)Nb,q(ξ2)

Input: Tolerance ε for convergence
Input: Load increment �� and maximum load L
for � = 0 to L do

Compute solution at load �: (wh, λh) ← Algorithm 1(ϒ0
� , ε)

Compute control points for reference surface ϒ0
�+�� (with bcs):

{p̃0
ab}a,b := arg min{qab}a,b

∥∥∥∥ ∑
0≤a≤n′+q−1
0≤b≤m′+q−1

qab Na,q(ξ1)Nb,q(ξ2) − ϕ0
�(ξ) − wh(ξ)n0(ξ)

∥∥∥∥
L2(A)

Define new reference surface ϒ0
�+��: ϕ0

�+��(ξ) =
∑

0≤a≤n′+q−1
0≤b≤m′+q−1

p̃0
ab Na,q(ξ1)Nb,q(ξ2)

Increment load: � ← � + ��
end
return ϒL

loadings, prescribed boundary conditions or imposed constraints. Roughly speaking, we anticipate that the reference sur-
face ϒ0 chosen to compute the solution of P�=0 will be unsuitable for computing the solution ϒ� of P� for any sufficiently 
large �, because solutions may develop new features with increasing �. Hence we expect that ϒ� �⊂ N (ϒ0) for any suffi-
ciently large parameter �.

Instead, we compute {ϒ�}� using a corresponding family of reference surfaces {ϒ0
� }� . We assume that the solution ϒ�

of P� , as a set in R3, depends continuously on the parameter �. Hence, the set ϒ�+�� is expected to be close to ϒ� (in the 
Hausdorff distance, for instance) whenever the load increment �� is sufficiently small. Then, we compute ϒ�+�� using the 
reference surface ϒ0

�+�� , which is defined to be a b-spline surface that approximates the known solution ϒ� . Algorithm 2 
details such a modification of Algorithm 1, by updating the reference surface at each load increment.

Fig. 7 explains the idea behind Algorithm 2 using the example of an initially flat circular fluid membrane wrapping 
around a rigid ellipsoidal particle. The details of the external loading used to model adhesion between the membrane 
and the particle are discussed in Section 6.3. For the current discussion, we shall think of the loading parameter � as 
the adhesion energy— a larger value for � corresponds to a stronger adhesive interaction between the membrane and the 
particle, with � = 0 denoting no adhesion at all. For simplicity, we neglect volume/area constraints. We also use polar 
coordinates ξ = (ξ1 = r, ξ2 = θ) ∈A = [0, 1] × [0, 2π ] instead of Cartesian coordinates. Each reference surface ϒ0

� = {ϕ0
�(A)}

satisfies boundary conditions

ϕ0
� · e1 = ϕ0

� · e2 = 0, at r = 0,(
ϕ0

� · e1

)2 +
(
ϕ0

� · e2

)2 = 1, at r = 1,

∂ϕ0
�

∂r
· e3 = ∂ϕ0

�

∂r
· e3 = 0, at r = 0,1, (45)

while the offset coordinate satisfies

wh

∣∣∣∣
(r=0,θ)

= ∂ wh

∂r

∣∣∣∣
(r=0,θ)

= ∂ wh

∂r

∣∣∣∣
(r=1,θ)

= 0.

Starting with zero adhesion (� = 0) and gradually increase the load � in fixed increments ��, suppose that we have 
computed the solution ϒ� = {ϕ�(A)} using the b-spline reference surface ϒ0

� = {ϕ0
�(A)}. We expect that the solution ϒ�+��

for loading � + �� to be close to ϒ� . Although it is appealing to choose ϒ0
�+�� = ϒ� , this is not possible in general. First, 

ϒ� is not a b-spline surface. In fact, ϕ� : A → R
3 is not a piecewise polynomial (rather a piecewise rational polynomial). 

Second, the degree q and knot vectors T0, S0 used to define reference surfaces are chosen independently of degree p and 
knot vectors T, S used to approximate the offset coordinates. Hence we construct ϒ0

�+�� to be an approximation of ϒ� , by 
setting ϕ0

�+�� to be the L2(A)-projection of ϕ� onto BT0,q ⊗ BS0,q . Specifically, ϒ0
�+�� is defined by computing a new set 

of control points so that ϒ0
�+�� approximates ϒ� in an L2-sense while satisfying boundary conditions (45). The example 

depicted in Fig. 1 was also computed in precisely this way.
We conclude this discussion with a few remarks.

(1) In Fig. 7, observe that the solutions at loads �, � + ��, . . . are not graphical over the initial reference surface ϒ0
0 , i.e., 

ϒ�, ϒ�+�� . . . �⊂ N (ϒ0
0 ). Hence it is essential to update the choice of reference surfaces in this example (as well as in 

Fig. 1).
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Fig. 7. Graphical illustration of Algorithm 2 using an example of a fluid membrane wrapping around an ellipsoidal particle. The load parameter � corresponds 
to the adhesion energy γ in (56). To compute the solution ϒ�+�� with load � + ��, we construct the reference surface ϒ0

�+�� as an approximation 
(L2-projection) of the known solution ϒ� at load �.

(2) While Algorithm 2 updates the reference surface at each load step, it may only be necessary to perform such updates 
periodically.

(3) For definiteness, we retain the same knot vectors T0 and S0 for all reference surfaces in Algorithm 2. Such a choice, 
while convenient, is not essential. It is certainly possible, especially for solutions having localized features, to adapt the 
knot vectors used to define reference surfaces. In general, we may choose knot vectors T0

� , S0
� and a corresponding set 

of control points {p0
i, j}i, j at load step � to define the reference surface ϒ0

� .

(4) Defining ϒ0
�+�� to be an approximation of ϒ� to solve problem P�+�� in Algorithm 2 should be interpreted in the 

context that ϒ0
�+�� serves as an initial guess for the solution ϒ�+�� . The magnitude of the error in the computed solu-

tion wh depends on the choice of the reference surface. However, we expect that small perturbations of the reference 
surface do not affect the order of accuracy of the solution. We do not present a rigorous analysis substantiating this 
intuition. The specific choice of an L2-projection in Algorithm 2 is for convenience. Alternative methods of approximat-
ing ϒ� to define ϒ0

�+�� are certainly possible.
(5) The assumption that a small change in the loading parameter � results in a small change in the solution ϒ� (continuity) 

is essential for the success of Algorithm 2. It is possible to identify problems where this is not the case (the solution 
may suffer instabilities beyond certain �, for example). Choosing the reference surface in such scenarios will presumably 
require detailed knowledge of the solution.

5. Specialization to axisymmetric configurations

We briefly discuss the specialization of the finite element method in Section 4 to axisymmetric membrane configurations. 
The assumption of rotational symmetry results in significant algorithmic and computational simplifications, besides being 
appropriate in a variety of experimentally-relevant applications. We provide examples in Section 5.2 and Section 5.3 to
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Fig. 8. An axisymmetric surface ϒ defined by its generating curve �g .

demonstrate using Algorithms 1 and 2 for the solution of the axisymmetric problem and discuss a few applications in 
Section 6 and Section 7.

5.1. The variational problem for offset axisymmetric fluid membranes

Axisymmetric surfaces are specified by their generating curve t �→ (r(t), z(t)) through parameterizations of the form

(θ, t) �→ r(t)(cos θ e1 + sin θ e2) + z(t)e3 for t ∈ I, θ ∈ 2π I. (46)

As depicted in Fig. 8, the surface in (46) possesses rotational symmetry about e3.
We seek axisymmetric solution surfaces of the form (46) for problem (P). To this end, we assume that both the reference 

surface ϒ0 and the offset coordinate w in (P) possess rotational symmetry. Let

�0 := {ψ0(t) : t ∈ I,ψ0 ∈ Vaxi ∩ (H3[I])2} (47)

denote the generating curve for ϒ0, where the space Vaxi incorporates appropriate boundary conditions on the parameteri-
zation ψ0 = (r0, z0). The restriction of (P) to axisymmetric solution surfaces is the problem:

Given �0 = {ψ0(I)}, find (w, λA) ∈ H2
0(I) ×R such that :

〈δ�axi[w, λA], (δw, δλA)〉 = 0 ∀(δw, δλA) ∈ H2
0(I) ×R,

(Paxi)

where

�axi[w] := �axi
B [w] + λA�axi

A [w] + �axi
F [w], (48a)

�axi
B [w] := κb

2

∫
I

H2
axi Jaxi dt, (48b)

�axi
A [w] :=

∫
I

Jaxi dt, (48c)

�axi
F [w] :=

∫
I

μJaxi dt. (48d)

The generating curve of the solution ϒ is given by

� := {ψ(t) = ψ0(t) + w(t)n0(t) : t ∈ I}, (49)

where n0 denotes the unit normal to �0. The functionals �axi, �axi
A , �axi

B and �axi
F in (48) are simply the restrictions of �, 

�A , �B and �F to solution surfaces with rotational symmetry of the form (46) and with the generating curve (49). The 
coordinates (r, z) of ψ in the Cartesian basis {er, ez} and their derivatives with respect to parameter t appearing in (48) are 
computed as



R. Rangarajan, H. Gao / Journal of Computational Physics 297 (2015) 1–29 17
Fig. 9. Example illustrating the approximation of (Paxi) using Algorithm 1. The reference curve �0 shown in dotted lines on the left is a cubic b-spline 
curve satisfying boundary conditions (52). The equilibrium configuration is computed by interpolating wh quadratic b-spline shape functions. The plot on 
the right shows the convergence of solutions as the knot spacing is reduced, while using the same reference curve �0.

r = r0 + w (n0 · er)

r′ = r′
0 + (w ′n0 + wn′

0) · er

r′′ = r′′
0 + (w ′′n0 + 2w ′n′

0 + wn′′
0) · er

z = z0 + w (n0 · ez)

z′ = z′
0 + (w ′n0 + wn′

0) · ez

z′′ = z′′
0 + (w ′′n0 + 2w ′n′

0 + wn′′
0) · ez

α = r′z′′ − r′′z′

β = √
r′ 2 + z′ 2

Jaxi = 2πrβ

Haxi = 1

β

(
α

β2
+ z′

r

)
.

(50)

Analogous to (G), the Galerkin approximation of problem (47) is obtained by restricting the offset field w in (47) to a 
finite dimensional subspace V 1D of H2

0(I),

Given �0 = {ψ0(I)}, find (wh, λh) ∈ V 1D ×R such that :
〈δ�axi[wh, λh], (δwh, δλh)〉 = 0 ∀(δwh, δλh) ∈ V ∂

1D ×R,
(Gaxi)

where V ∂
1D is the space of admissible variations of V 1D. In the remainder of the article, we shall adopt V 1D = BT,p . The 

components of the finite element residual vectors and tangent matrices can be derived using the calculations in Section 3.4
in conjunction with (46) and (49). We provide detailed expressions for them in Appendix A. Finally, analogous to our 
construction of reference surfaces as b-spline surfaces in Section 4.3 and Section 4.4, we construct reference generating 
curves as b-spline curves. Hence the parameterization ψ0 of �0 in (47) is of the form

ψ0(t) :=
n′+q−1∑

a=0

p0
a Na,q(t), t ∈ I, (51)

where {p0
a}a are the control points of �0.

5.2. Example: optimal convergence using Algorithm 1

Fig. 9 shows an example computed using Algorithm 1 to approximate the solution of (Paxi). We assume that there are 
no external interactions (�F = 0), omit the area constraint (λA = 0), and impose boundary conditions
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Fig. 10. Calculation of equilibrium vesicles shapes as the prescribed surface area is varied incrementally. Solutions computed using Algorithm 2 are depicted 
on the left. The solution computed with prescribed surface area A0 is used to construct the reference curve for computing the solution with surface area 
A0 + �A0, where �A0 is a small increment. Figure (b) shows the biconcave shape realized for a specific value of the prescribed surface area, which 
corresponds to a reduced volume v := 6

√
π V 0/(A0)3/2 = 0.8. The bending energy of the vesicle is plotted on the right as a function of its surface area. The 

minimum occurs, as expected, for the case of a unit sphere.⎧⎪⎪⎨
⎪⎪⎩

r(0) = r(1) = 0,

z(0) = 1,

z(1) = −1,

z′(0) = z′(1) = 0,

(52)

for coordinates (r, z) of the solution �. The exact solution of (Paxi) is hence the unit circle centered at (1/2, 0).
In Fig. 9(a), the reference curve �0 is a cubic b-spline, with its 13 control points chosen such that the coordinates (r0, z0)

of �0 satisfy boundary conditions (52). The offset coordinate is approximated using 22 quadratic b-spline functions (p = 2), 
a knot vector with uniform spacing h = 1/20 and satisfies boundary conditions wh(0) = wh(1) = w ′

h(0) = w ′
h(1) = 0.

Fig. 9(b) examines the convergence of computed generating curves to the exact one, as the knot spacing h is reduced 
while maintaining p = 2 and �0 fixed. We see that the rate of convergence in the L2(I)-norm is optimal, as was the case 
in the example in Section 4.2. The error in the max-norm is also observed to converge as O(h2). We mention that for 
a given �0 and knot vector, the accuracy of the solution can be improved by increasing the degree of b-splines used to 
interpolate wh .

5.3. Example: incremental solutions using Algorithm 2

Fig. 10 shows an example using Algorithm 2 to compute axisymmetric solutions in a sequence of incrementally loaded 
problems, with the prescribed surface area of the fluid membrane serving as the loading parameter. Hence the solution 
computed with surface area A0 serves to construct the reference curve used to compute the solution with surface area 
A0 + �A0.

In the example in Fig. 10, each reference curve is a cubic b-spline with 23 control points and satisfies boundary condi-
tions (52). At each loading step, normal perturbations wh satisfy boundary conditions wh(0) = w ′

h(0) = wh(1) = w ′
h(1) = 0, 

and are interpolated using 52 quadratic b-spline functions defined on a uniformly spaced knot vector. Control points for 
the reference curve are recomputed (using an L2(I)-projection) at the end of each load step. The figure also shows the 
realization of a biconcave shape with increasing surface area, a characteristic of red blood cells.

6. Application: adhesive interaction with rigid substrates

We demonstrate a useful application of the proposed finite element method to studying adhesive interactions of axi-
symmetric fluid membranes with rigid substrates. We consider two simple adhesion models. The first one discussed in 
Section 6.1 has been previously considered in [48,49], while the second type of interaction described in Section 6.3 is in-
spired by cohesive zone models in fracture mechanics [50]. The two models are qualitatively similar. Both consider adhesion 
to be a finite range interaction and are each defined by two parameters— the adhesion energy at the surface of the substrate 
and a length scale dictating the range of adhesive interactions. As this length scale approaches zero, we recover, at least in 
a qualitative sense, a contact-type potential.

The rationale behind adopting potentials that explicitly introduce a length scale for the interaction, rather than assuming 
a contact potential, is two fold. First, experiments show that there is indeed a finite separation between interacting mem-
branes. We interpret such a separation as the cumulative effect of various interactions, for instance van der Waals forces, 
electrostatic repulsion, steric interactions, and the formation of bonds between complimentary surface ligands and recep-
tors [51]. The second reason arises from the need for tracking the adhesion front when using a contact potential. Specifically, 
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Fig. 11. Deformation of a vesicle due to the adhesive potential (53). Figures (a) and (b) illustrate the influence of the non-dimensionalized adhesion energy γ̂
and the length-scale ε, respectively.

a contact potential introduces a moving interface that distinguishes the region of the membrane adhered to the substrate 
from that which is not. Analogous to a displacement discontinuity in a fractured solid, the membrane suffers a sharp jump 
in curvature across the adhesion front. For axisymmetric problems, this is not a particularly difficult issue since tracking 
the adhesion front reduces to following a corresponding point on the curve generating the membrane surface. For general 
three-dimensional membranes however, tracking a moving front introduces additional complexities that include describing 
the interface, defining compatible discretizations on either side of it and accounting for changes in topology of the interface.

6.1. Adhesion of vesicles in a finite range potential

Consider a flat substrate occupying the region z ≤ zs . Let the interaction of a lipid molecule with the substrate be 
governed by the potential

μ(z) = γ

[(
ε

z − zs

)2

− 2

(
ε

z − zs

)4
]

, (53)

which depends on the distance z − zs normal to the substrate and attains a minimum value of −γ at z − zs = ε, see 
Fig. 11(a). The parameter γ is interpreted as the adhesion energy per unit area while the length scale ε defines the range 
of interaction away from the substrate. Within the framework of the model problem (Paxi), we set �F to be

�F [w] =
1∫

0

μ(z(w))2πrβ dt. (54)

In addition to (54), we assume boundary conditions{
r(0) = r(1) = 0,

z′(0) = z′(1) = 0,
(55)

for the coordinates (r, z) of the solution and impose the surface area constraint

�A =
∫
I

2πrβ dt = 4πa2, where a = 1.

We choose the reference curve �0 to be a semi-circle with radius a = 1 that satisfies boundary conditions (55). Boundary 
conditions on the offset coordinate then follow as w ′

h(0) = w ′
h(1) = 0. Notice that the axial coordinates at the poles are 

unconstrained, i.e., z(0) and z(1) are not prescribed. They are determined by the values of wh(0) and wh(1), which are in 
turn computed as part of the solution.
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Fig. 12. Manipulation of a vesicle adhered to a substrate simulated using Algorithm 2. In figure (a), a prescribed displacement is imposed at the top of an 
adhered but otherwise unconstrained vesicle. The vesicle remains adhered to the substrate even after a displacement of over twice its radius. Figure (b) 
shows the reference curve used to compute one of the intermediate configurations.

Fig. 11(a) examines the deformation of a vesicle as the non-dimensional parameter γ̂ := γ /(κba2) is varied, while 
Fig. 11(b) demonstrates the influence of the length scale ε. The vesicle shapes are computed following Algorithm 1 and 
using 200 cubic b-splines for interpolating wh . When γ̂ = 0, the exact solution coincides with �0 irrespective of the choice 
of ε. At finite values of γ̂ , observe from the figure that the vesicle appears tethered at z ≈ zs + ε, i.e., at a distance ε away 
from the surface of the substrate. For a fixed ε, we see that the contact area and the deformation of the vesicle increase 
with γ̂ . Decreasing ε, and in particular the case ε = 10−4a in Fig. 11(b), reveals that the interaction (53) progressively 
resembles a contact-type potential.

The choice of a semi-circle as a reference curve in Fig. 11 is appropriate because the range of deformations examined 
is sufficiently small. When the top pole of the vesicle approaches the center of �0 at larger values of γ̂ , it is necessary to 
adopt a new reference curve and follow Algorithm 2.

6.2. Manipulation of an adhered vesicle

The peel test is a commonly used experimental technique to quantify the strength of adhesion between a vesicle and 
a substrate. It consists in measuring the force/energy required to detach an adhered vesicle from the substrate. Such mea-
surements can also help calibrate parameters in a model such as (53). Here we simulate a displacement-controlled test in 
which a prescribed displacement is imposed at the top pole of the vesicle away from the substrate. The problem setup is 
identical to that in Section 6.1, except that z(1) = ztop is prescribed. Hence we set z0(1) = ztop and wh(1) = 0.

Fig. 12(a) shows the equilibrium configurations of the vesicle corresponding to parameters γ̂ = 1.75 and ε = 0.2a, as 
the top pole is displaced away from the substrate. The solutions were computed using Algorithm 2, with the imposed 
displacement serving as the loading parameter. Rather than updating the reference curve with each displacement increment, 
it was updated periodically; Fig. 12(b) shows the reference curve used to compute one of the intermediate shapes.

Accurate detection of the detachment of the vesicle from the substrate requires identifying a bifurcation in the load-
displacement curve. We adopt an alternative strategy shown in Fig. 13. To identify the transition between adhered and 
detached states, we consider the total energy when (i) the attached vesicle is pulled away from the substrate and (ii) as 
a detached vesicle is brought towards the substrate from sufficiently far away. The prescribed position ztop at which these 
two energy curves meet identifies two distinct equilibrium configurations of the vesicle, corresponding to an adhered and 
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Fig. 13. Detachment of a vesicle adhered to a substrate in a displacement-controlled test. The plot shows the total energy of a vesicle in two tests— as an 
adhered vesicle is pulled away from the substrate and as a detached vesicle is brought progressively closer to the substrate from far away. The prescribed 
position of the top of the vesicle at which the two energy curves meet identifies the transition between adhered and detached states.

a detached state, that have identical energy. For the chosen values of γ̂ and ε, we find this position to be ztop ≈ 2.25a. 
Fig. 13 shows the two configurations computed at this point. The figure also indicates the energies corresponding to the 
configurations shown in Fig. 12(a). In the regime ztop > 2.25a, the vesicle has lower energy in a detached state while the 
adhered state is only metastable. Conversely, for ztop < 2.25a, the detached state is metastable while the adhered state has 
a lower energy.

6.3. Uptake of a spherical particle by a fluid membrane

Next, we study the uptake of a rigid spherical particle by a fluid membrane [52–54]. We consider the setup depicted in 
Fig. 14(a) in which a circular fluid membrane with radius a = 1 is connected to a lipid reservoir along its periphery. A rigid 
spherical particle, coated with ligands capable of binding with receptors on the membrane, is introduced at the center of the 
membrane. The energy released by the formation of ligand-receptor bonds induces deformation of the membrane, causing 
the membrane to wrap around the particle. The excess lipids (surface area) necessary for this wrapping are supplied by 
the reservoir. The kinetics of membrane receptors is an important factor in the dynamic wrapping process [34,55]. Here we 
assume the receptor supply to be indefinite and instantaneous, so that we may consider the problem to be quasistatic. We 
are exclusively concerned with determining the deformation of the fluid membrane around the particle as a function of the 
adhesion energy, which is roughly correlated to the density of ligands on the particle.

We consider an adhesive potential � : R →R that is qualitatively similar to (53) and given by

�(φp) := −γ

(
1 + φp

ε

)
exp

(
−φp

ε

)
. (56)

The argument φp of � is the signed distance to the particle surface �p

φp(r, z) :=
√

r2 + (z − rp)2 − rp,

where rp is the radius of the particle centered at (0, rp) and we adopt the convention of negative distances within the 
particle. Notice that � attains a minimum value of −γ at �p where φp = 0. As in (53), the parameter γ is the adhesion 
energy per unit area. The length scale ε determines the rate of decay of the interaction away from �p , as well as the rate 
of growth within the particle. The latter behavior serves to enforce a penalty for penetration of the membrane into the 
particle. These features of (56) are illustrated in Fig. 14(b).
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Fig. 14. An initially flat membrane spontaneously wraps around a rigid particle, either completely or partially when the energy released due to adhesion 
compares favorably with the energetic cost of membrane deformation. We assume that the excess membrane area required for wrapping is supplied by a 
lipid reservoir along the membrane boundary and neglect the kinetics of receptor diffusion responsible for adhesion of the membrane to the particle. The 
deformed membrane shape shown in (a) corresponds to the configuration depicted in Fig. 15(d). The features of the potential (56) used to model adhesion 
are illustrated in (b).

In the context of problem (Paxi), �F has the form

�F [w] :=
1∫

0

�(φp(r, z))2πrβ dt. (57)

The explicit appearance of the signed distance to the particle surface in (56) and (57) conveys the influence of the geometry 
of the particle on the deformation of the membrane. The influence of the particle geometry on the weak form is evident 
from the linearization of �F ,

〈δ�(φp(r, z)), δw〉 = �′(φp(r, z))np(πp(r, z)) · n0, (58)

where np is the unit outward normal to �p and πp is the closest point projection onto �p . Similarly, computing the second 
variation of �F introduces the influence of the curvature of �p .

For simplicity, we assume that the particle remains fixed and allow the membrane to deform around it. Correspondingly, 
we assume boundary conditions⎧⎪⎪⎨

⎪⎪⎩
r0(0) = 0
r0(1) = a
z0′

(0) = z0′
(1) = 0

w ′
h(0) = w ′

h(1) = 0,

(59)

for the coordinates (r0, z0) of the reference curve and the offset coordinate wh . Fig. 15 depicts the results from a calculation 
following Algorithm 2, using cubic b-splines to interpolate wh , with the radius of the particle set to rp = 0.15a, length scale 
ε = 10−2a, and as the non-dimensional parameter γ̂ = γ /(κba2) is increased in steps of �γ̂ = 0.5.

The deformation of the membrane around the particle results from a competition between the energy gained from ad-
hesion and the cost of membrane deformation. Fig. 16(a) shows the bending energy and the contact area as a function of γ̂ . 
The contact area is computed as the ratio �F [wh]/γ . As γ̂ is increased, we observe that the contact area approaches that 
of the surface area of the particle, indicating complete wrapping. Fig. 16(b) shows the distribution of the mean curvature as 
a function of the parametric coordinate t ∈ I for the case γ̂ = 32. We observe that the curvature is close to that of the par-
ticle (1/rp) where the membrane is adhered to the particle, undergoes a sharp drop and subsequently reaches zero. With a 
contact potential, the membrane curvature suffers a discontinuity at the interface between adhered and detached regions of 
the membrane. Since we adopt a regularized potential (56), we observe a sharp but continuous change in curvature instead. 
The total surface area of the membrane increases by about 10% in the configuration in Fig. 15(d). Since we have assumed 
zero membrane tension, there is no energy associated with drawing additional lipids from the reservoir.

7. Application: tether formation

Biological membranes exhibit numerous tubular structures along their periphery. Such tether-like structures are thought 
to form as a result of localized forces exerted by external proteins. Besides their biological significance, experiments to 
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Fig. 15. Wrapping of a fluid membrane with unit radius around a spherical particle with radius rp = 0.15a as a function of increasing adhesion energy. 
Adhesion between the membrane and the particle is modeled with the potential in (56). Membrane deformations are computed using Algorithm 2.

Fig. 16. Plot (a) shows the bending energy and contact area as a function of the adhesion energy γ̂ for the example discussed in Section 6.3. With 
increasing γ̂ , the contact area approaches that of the surface area of the particle indicating complete wrapping. The bending energy approaches that of a 
spherical vesicle. The markers in the plot indicate calculations using quartic b-splines for the offset coordinate and quintic b-splines for the reference curve. 
The solid and dashed lines correspond to using cubic and quartic b-splines, respectively. The agreement between the two calculations suggests that the 
results have converged. Plot (b) shows the mean curvature as a function of the curve parameter t for γ̂ = 32. Notice the sharp drop at the transition from 
adhered to the detached region of the membrane.

measure mechanical properties of membranes routinely use optical tweezers or micropipettes to pull tethers from mem-
branes [41,56].

7.1. Tether formation in flat membranes

Roughly speaking, a membrane subjected to a point force/displacement prefers a diffuse (non-local) deformation that 
minimizes its bending energy. Membrane tension on the other hand serves to localize the deformation in order to reduce 
the energetic cost associated with a larger surface area. Fig. 17 shows an example computed using Algorithm 2 to illustrate 
the role of membrane tension in the formation of tethers [57,58]. We consider an initially flat membrane (representative of 
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Fig. 17. Demonstration of tether formation in membranes with membrane tension. Figure (a) shows the localization of membrane deformation with in-
creasing tension. Figure (b) shows that at fixed σ̂ � 1, the tether radius rσ is independent of the tether length L. Plot (d) demonstrates that rσ scales as 
(κb/σ )1/2 when σ̂ � 1, as predicted by (61).

a giant vesicle) with radius a = 1. The membrane is clamped along its periphery to a lipid reservoir. A prescribed displace-
ment is imposed at its center to replicate a displacement-controlled experimental. Correspondingly, we assume boundary 
conditions⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r0(0) = 0
r0(1) = a
z0(0) = L
z0(1) = 0
z0′

(0) = z0′
(1) = 0

wh(0) = wh(1) = w ′
h(0) = w ′

h(1) = 0,

for the reference curve and offset coordinate. A given tension σ in the membrane contributes to the energy functional �
in (Paxi) as

�F [w] := σ

1∫
2πrβ dt.
0
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Fig. 18. Deformation of a vesicle containing a rigid tubule with increasing membrane tension. Figure (a) depicts the vesicle shapes realized (computed) for 
a fixed tubule length L ∼ 3a as σ̂ is increased. Both symmetric and asymmetric vesicle shapes are possible, as evidenced by figures (a) and (b). Figure (c) 
shows the pressure in the (incompressible) fluid contained in the vesicle as a function of σ̂ for a given tubule length L ∼ 3a. The linear relationship 
observed suggests that when the surface energy from membrane tension dominates the bending energy of the vesicle, a simple Laplace–Young relation 
provides a reasonable estimate for the fluid pressure.

At a fixed displacement L at the center of the membrane, Fig. 17(a) depicts the shapes realized for a few different values 
of the non-dimensional parameter σ̂ := σ/(κba2). We see that the membrane deformation is progressively localized to a 
small vicinity of the center with increasing values of σ̂ . When σ̂ � 1, a simple calculation helps estimate the radius rσ of 
the tether. Assuming that the cylindrical tether structure contributes exclusively to the bending and surface energies, we 
have

� ≈ κb

2
× 1

4r2
σ

× 2πrσ L + σ × 2πrσ L + external work, (60)

in which the first term is the bending energy and the second is the contribution from membrane tension. The third term 
in (60) represents the work done in extending the tether to its length L. Requesting stationarity of � in (60) with respect 
to rσ and noting that the external work is independent of rσ , we get

σ � κb/a2 ⇒ rσ ≈
√

κb

8σ
. (61)

The estimate for rσ in (61) is independent of the tether length L, the membrane radius a and scales as σ−1/2. These features 
are evident in the numerically computed solutions as well. Fig. 17(b) shows the membrane deformation for σ̂ = 29 as the 
tether length L is varied. The measured tether radius agrees well with (61) and notably, found to be independent of L. 
Fig. 17(d) compares the estimate in (61) with the radii measured from membrane deformations computed for a range of σ̂
while using a fixed length L = 1.6a. We observe good agreement between the two when σ̂ � 1.

7.2. Microtubules in vesicles

Actin polymerization in migrating cells causes the formation of slender extensions of the membrane for purposes of 
sensing the environment during cell migration [59]. Such behavior can be modeled, in a very simplified setting, using 
membrane tension in finite-sized vesicles. Membrane tension also dominates the behavior of vesicles in biomechanical force 
probes used to characterize the mechanical response of single bonds [56].

In Fig. 18, we consider an application relevant to measuring the bending rigidity of microtubules [60]. In such mea-
surements, a microtubule (or a bundle of them) is contained within a vesicle. The length of the tubule is larger than the 
diameter of the vesicle, causing the vesicle to deform. The membrane tension in the vesicle is controlled using micropipette 
aspiration, without altering the volume of the fluid in the vesicle. Since the bending stiffness of tubules is much larger 
that of the vesicle, we assume the tubules to be rigid. We also neglect possible adhesion of the membrane to the tubule 
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wall, which is reasonable when the diameter of tubules is 2–3 orders of magnitude smaller than its length and the vesicle 
diameter. The measurement of the bending modulus of the tubule itself relies on the buckling of the tubule triggered by a 
sufficiently large membrane tension; we do not simulate this phenomenon here.

For a vesicle of radius a = 1, Fig. 18(a) shows the vesicle shapes realized for a given tubule length L as the parameter 
σ̂ := σ/(κba2) is increased. The volume enclosed by the vesicle is maintained at V 0 = (4/3)πa3. We assume boundary 
conditions⎧⎪⎪⎨

⎪⎪⎩
r0(0) = r0(1) = 0
z0(0) = z0′

(0) = z0′
(1) = 0

z0(1) = L
wh(0) = w ′

h(0) = wh(1) = w ′
h(1) = 0,

for the reference curve and offset coordinate. We observe that increasing the membrane tension causes the deformation 
of the vesicle to localize around the microtubules. In contrast to the symmetric shapes seen in Fig. 18(a), Fig. 18(b) shows 
a vesicle configuration that is asymmetric in the vertical direction. It is identified by perturbing the initial guess used to 
compute the symmetric solution. Both symmetric and asymmetric shapes have been previously reported [61]. Their energies 
were almost identical in our calculations.

From the vesicle shapes observed in Fig. 18(a), it is evident that the approximations employed in computing the tether 
radius for a flat membrane in (61) are no longer warranted. Nevertheless, we see from Fig. 18(b) that the pressure p, 
computed as the Lagrange multiplier conjugate to the volume constraint, exhibits a simple linear relationship with the 
membrane tension for a fixed tubule length. The data shown in Fig. 18(b) demonstrates that the Young–Laplace relation 
p ≈ −2σa provides a reasonable approximation for the pressure in the fluid enclosed by the vesicle.

8. Concluding remarks

We introduced a simple and efficient finite element method to systematically approximate large deformations of three-
dimensional fluid membranes at equilibrium. The method is devoid of artificial constraints and stabilizations for in-plane 
fluid motion, as is commonly found in the literature on this topic. The choice of (the normal offset) coordinate addresses 
an important oversight in the literature wherein numerical computations have predominantly been restricted to Cartesian 
coordinates. Yet, the proposed method does not explicitly require computing detailed differential-geometric quantities and 
is reasonably straightforward to implement.

We anticipate applications of the proposed method to a wider class of experimentally relevant problems (tweezers, mi-
cropipette aspirations, vesicle packaging of nano-materials) as well as problems with important additional physics. In the 
latter category, we are particularly interested in studying optimal shapes, sizes and orientations of nano-particles in endo-
cytosis while including the diffusion of membrane receptors [62–65], in investigating mechanisms of phagocytosis [66] and 
understanding vesicle interactions with encapsulated filaments [60]. Recent advances in defining smooth discretizations over 
adaptively refined grids will be crucial for efficiently computing general three-dimensional solutions in such applications.

Appendix A. Operator expressions for the axisymmetric case

The expressions for the weak form and its linearization recorded in Section 3.4 simplify significantly for axisymmetric 
membrane configurations. We provide the expressions for the residual Raxi[wh, λh] and the tangent Aaxi[wh, λh] operators, 
while assuming that the offset coordinate wh is interpolated in the space of b-spline functions of degree p, i.e., V 1D = BT,p .

A.1. Evaluation of the residual (weak form)

The residual Raxi[wh, λh] is evaluated by linearizing the functional �axi in (48) along admissible variations. Adopting the 
shorthand δa(·) = 〈δ(·), Na,p〉, we have

Raxi
a [wh, λh] := Faxi

a [wh] + faxi
a [wh] + λhGaxi[wh] 1 ≤ a ≤ n + 1, (A.1a)

where Faxi
a = δa�

axi
B [wh] = κb

2

∫
I

(
2HaxiJaxi δaHaxi + H2

axiδaJaxi

)
dt, (A.1b)

Gaxi
a = δa�

axi
A [wh] =

∫
I

δaJaxi dt, (A.1c)

faxi
a = δw�axi

F [wh] =
∫
I

(δaμ Jaxi + μδaJaxi)dt. (A.1d)

The linearizations δa(·) appearing in (A.1) follow from definitions (50) as
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δar = Na,p (n0 · er)

δar′ = (N ′
a,pn0 + Na,pn′

0) · er

δar′′ = (N ′′
a,pn0 + 2N ′

a,pn′
0 + Na,pn′′

0) · er

δaz = Na,p (n0 · ez)

δaz′ = (N ′
a,pn0 + Na,pn′

0) · ez

δaz′′ = (N ′′
a,pn0 + 2N ′

a,pn′
0 + Na,pn′′

0) · ez

δaα = z′′δar′ + r′δaz′′ − z′δar′′ − r′′δaz′

δaβ = r′δar′ + z′δaz′

β

δaJaxi = 2π(βδar + rδaβ)

δaHaxi = −Haxi

β
δaβ + 1

β2

(
δaα − α

β
δaβ

)
+ 1

βr

(
δaz′ − z′

r
δar

)

δaμ = ∂μ

∂r
δar + ∂μ

∂z
δaz.

(A.2)

A.2. Evaluation of tangents

The tangent matrix Aaxi is the consistent linearization of the residual Raxi , namely,

Aaxi[wh, λh] =
[

Kaxi[wh] + Laxi[wh] + λhMaxi[wh] Gaxi[wh]
Gaxi[wh]T 0

]
, (A.3)

where Kaxi, Laxi and Maxi are the linearizations of Faxi, faxi and Gaxi, respectively. Denoting δ2
ab(·) := 〈δ2(·), Na,p, Nb,p〉, their 

components are derived from (A.1) as

Kaxi
ab = δ2

ab�
axi
B [wh] = κb

∫
I

[(
δbHaxi δaHaxi + Haxi δ

2
abHaxi

)
Jaxi +

+ (δbJaxi δaHaxi + δaJaxi δbHaxi)Haxi +
H2

axi

2
δ2

abJaxi

]
dt, (A.4a)

Maxi
ab = δ2

ab�
axi
A [wh] =

∫
I

δ2
abJaxi dt, (A.4b)

Laxi
ab = δ2

ab�
axi
F [wh] =

∫
I

(
δ2

abμ Jaxi + δaμδbJaxi + δbμδaJaxi + μδ2
abJaxi

)
dt. (A.4c)

The second variations δ2
ab(·) appearing in (A.4) are in turn computed using (50) and (A.2) as

δ2
abr = δ2

abr′ = δ2
abr′′ = δ2

ab z = δ2
ab z′ = δ2

ab z′′ = 0

δ2
abα = δar′δb z′′ + δaz′′δbr′ − δar′′δb z′ − δaz′δbr′′

δ2
abβ = 1

β

(
δar′δbr′ + δaz′δb z′ − δaβδbβ

)
δ2

abJaxi = 2π
(
δarδbβ + δaβδbr + rδ2

abβ
)

δ2
abHaxi = −δaHaxiδbβ

β
− 1

β2

(
δaβδbHaxi + Haxiδ

2
abβ

)

+ 1

β2

(
δ2

abα − δaβδbα + αδ2
abβ

β
+ αδaβδbβ

β2

)
− δbβ

β3

(
δaα − α

β
δaβ

)

+ 2z′

βr3
δarδbr − 1

βr2

(
δarδb z′ + δaz′δbr

)
δ2

abμ = ∂2μ

∂2r
δarδbr + ∂2μ

∂2z
δazδb z + ∂2μ

∂r∂z
(δarδb z + δazδbr) .
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