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Abstract We analyze a class of discrete, univariate, and strictly quasiconcave max–
min problems. A distinctive feature of max–min-type optimization problems is the
nonsmoothness of the objective being maximized. Here we exploit strict quasiconcav-
ity of the given set of functions to prove existence and uniqueness of the optimizer, and
to provide computable bounds for it. The analysis inspires an efficient algorithm for
computing the optimizer without having to resort to any regularization or heuristics.
We prove correctness of the proposed algorithm and briefly discuss the effect of toler-
ances and approximate computation. Our study finds direct application in the context
of certain mesh deformation methods, wherein the optimal perturbation for a vertex
is computed as the solution of a max–min problem of the type we consider here. We
include examples demonstrating improvement of simplicial meshes while adopting
the proposed algorithm for resolution of the optimization problems involved, and use
these numerical experiments to examine the performance of the algorithm.

Keywords Discreteminimax ·Quasiconvex optimization ·Nonsmooth optimization ·
Mesh optimization · Mesh smoothing · Polynomial roots
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1 Introduction

Max–min andmin–max typeoptimization problems are ubiquitous in science and engi-
neering, appearing in structural design optimization [1], economics and game theory
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[2] and image processing [3] to name a few applications. In many instances of such
problems, restricting the search for an optimizer in R

d , d ≥ 1, to a given/computed
direction results in a line search problem of the form

Find λopt = arg max
λ∈R

min
1≤α≤n

fα(λ), (1)

where { fα}n
α=1 is a given set of scalar-valued functions. Equation (1) is termed a

discrete max–min problem [4], where discreteness emphasizes that n ∈ N. We are
interested here in establishing existence and uniqueness of λopt when the functions
{ fα}α satisfy a specific set of assumptions, and in designing algorithms for computing
the optimizer. Most notable among the assumptions on { fα}α is that of strict quasi-
concavity over certain upper level sets. The ensuing analysis of Eq. (1) is then quite
straightforward, but crucially, inspires a simple yet robust and efficient algorithm for
its resolution.

A characteristic feature of Eq. (1) distinguishing it from straightforward univariate
maximization is the fact that even if the given functions { fα}α are all smooth, the
objective

F(λ) � min
1≤α≤n

fα(λ) for λ ∈ R,

being maximized is in general continuous but not differentiable. Nonsmoothness of F
precludes the possibility of using Newton-type methods for maximization in Eq. (1).
Similarly, derivative-freemethods that require differentiability of the objective to guar-
antee convergence, are ruled out as well. A recurring idea in the literature for the
resolution of such nonsmooth max–min/min–max problems consists in regularizing
the objective, cf. [5,6]. In the context of Eq. (1), this consists in replacing F , for
instance, by the surrogate

Ft (λ) = 1

t
log

n∑

α=1

exp (t fα(λ)) for t > 0, (2)

which has comparable smoothness as the functions { fα}α . It is then possible to resolve
Eq. (1) by computing maximizers of a sequence of functions {Ft }t as defined in
Eq. (2) and letting t ↗ ∞, see [7,8]. Equation (2) is an alternative to more commonly
employed regularizations using �p-norms, such as replacing F with the objective
λ �→ ∑n

α=1 | fα(λ)|p with p = 2 being a pervasive choice.
The algorithm we propose here consists in restricting the search for the optimizer

to an upper level set of F . Exploiting quasiconcavity then narrows the search to a
compact interval, and the search is terminated once F is detected to be decreasing.
In effect, computing the optimizer entails only computing some of the maxima and
pairwise intersections of functions in { fα}α , which in turn reduces to computing roots
of smooth functions. We highlight some consequences of quasiconcavity which help
in reliably computing these maxima/intersections numerically.

Our motivation to study Eq. (1) stems from designing certain optimization-based
mesh deformation methods. We demonstrate an application of the proposed algorithm
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in this context in Sect. 4. Mesh deformation methods are routinely used to improve
qualities of unstructured meshes in finite element simulations [9–11], to adapt meshes
based on a posteriori error estimates [12], or even in computer graphics to improve
data visualization [13]. In the method discussed in Sect. 4, computing the optimal
perturbation for each vertex in a mesh along a prescribed/computed direction requires
resolving a max–min problem of type (1), with the qualities of elements around a
vertex furnishing the functions { fα}α . The assumption of quasiconcavity is natural in
this context [14], as well as in certain generalized linear programs [15].

2 The discrete max–min problem

Let us first introduce the notation necessary to specify the assumptions on the functions
{ fα}α in problem (1). For a function f : R → R, we denote the y-level set by

Ly( f ) � {λ ∈ R : f (λ) = y},

and the corresponding upper level set by

L+
y ( f ) � {λ ∈ R : f (λ) ≥ y}.

We say that f is strictly quasiconcave on a compact interval I if

λ1, λ2 ∈ I ⇒ f (ηλ1 + (1 − η)λ2) > min{ f (λ1), f (λ2)} ∀ η ∈ (0, 1). (3)

With assumptions A0–A3 given by

A0 Feasibility: f (0) > 0,
A1 Continuity: f is continuous,
A2 Decay: f (λ) → 0 as |λ| → ±∞,
A3 Strict quasiconcavity: f is strictly quasiconcave on L+

y ( f ) for each y ≥ f (0),

we are interested in resolving the following version of problem (1):

Given { fα}n
α=1 satisfying A0 − A3, find λopt = arg max

λ∈R
min

1≤α≤n
fα(λ). (4)

Some of the specific choices in A0–A3 are inconsequential for the analysis or res-
olution of Eq. (4). For instance, we can pick λ0, y0 ∈ R and replace the feasibility
condition A0 by fα(λ0) > y0 and the decay condition A3 by lim|λ|→∞ fα(λ) = y0.
For definiteness, we have set λ0 = 0 and y0 = 0.

2.1 Useful implications of strict quasiconcavity

We record a few consequences of assumptions A0–A3, and in particular, of strict
quasiconcavity, that will be useful for our purposes. Some of these results can be
inferred from well known properties of quasiconcave functions [16,17]. Nevertheless,
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we include proofs to keep the discussion self-contained, as well as to highlight how
the individual assumptions are invoked.

Theorem 1 Let f : R → R satisfy assumptions A1–A3. If y ≥ f (0) is such that
Ly( f ) �= ∅, then:

(i) λy � min{λ ∈ Ly( f )} and λy � max{λ ∈ Ly( f )} belong to Ly( f ).

(ii) L+
y ( f ) = [λy, λy].

(iii) Ly( f ) = {λy, λy}.
Proof Let y satisfy the hypothesis in the statement.

(i) Continuity of f implies that Ly( f ) = f −1({y}) is closed. By the decay assump-
tion, we can find ry > 0 such that |λ| > ry ⇒ f (λ) < y/2. Consequently,
Ly( f ) is contained in [−ry, ry] and is therefore bounded. Hence Ly( f ) is com-
pact. Since Ly( f ) is nonempty by assumption, it follows that λy and λy both
exist. They lie in Ly( f ) because Ly( f ) is compact.

(ii) Since Ly( f ) ⊆ L+
y ( f ) and Ly( f ) �= ∅, L+

y ( f ) is nonempty. If L+
y ( f ) is a

singleton, then we should have L+
y ( f ) = Ly( f ) = {λy = λy}, fromwhere claim

(ii) follows trivially. In the following therefore, we assume that L+
y ( f ) contains

at least two distinct points. Notice that if there exists λ ∈ L+
y ( f ) \ Ly( f ), then

the decay and continuity assumptions on f imply that Ly( f ) contains at least
two points, one on either side of λ, by virtue of the intermediate value theorem.
In particular,

L+
y ( f ) \ Ly( f ) �= ∅ ⇒ λy < λy . (5)

From the contrapositive of Eq. (5), we get

λy = λy ⇒ L+
y ( f ) \ Ly( f ) = ∅ ⇒ L+

y ( f ) = Ly( f ) = {λy = λy}. (6)

Equation (6) shows that

λy = λy ⇒ #L+
y ( f ) = 1. (7)

Since we know L+
y ( f ) contains at least two distinct points, we conclude from

Eq. (7) that

#L+
y ( f ) ≥ 2 ⇒ λy < λy . (8)

Let us now proceed to prove claim (ii). Let λ1 and λ2 be an arbitrary pair of
distinct points in L+

y ( f ). Without loss of generality, let λ1 < λ2. From Eq. (3),
we have

λ3 ∈ (λ1, λ2) ⇒ f (λ3) > min{ f (λ1)︸ ︷︷ ︸
≥y

, f (λ2)︸ ︷︷ ︸
≥y

} ⇒ λ3 ∈ L+
y ( f ),
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leading us to conclude that

λ1, λ2 ∈ L+
y ( f ) with λ1 < λ2 ⇒ [λ1, λ2] ⊆ L+

y ( f ). (9)

Since λy, λy ∈ L+
y ( f ) and since Eq. (8) shows λy < λy , we set λ1 = λy and

λ2 = λy in Eq. (9) to get

[λy, λy] ⊆ L+
y ( f ). (10)

It only remains to discount the possibility of a strict inclusion in Eq. (10). To this
end, suppose there exists λ ∈ L+

y ( f ) such that λ < λy . Then λ, λy and λy belong
to the set L+

y ( f ) over which f is strictly quasiconcave. Then from Eq. (3) we
have

λ < λy < λy ⇒ f (λy) > min{ f (λ)︸︷︷︸
≥y

, f (λy)︸ ︷︷ ︸
=y

} ⇒ f (λy) > y,

which contradicts the fact that f (λy) = y. Therefore we conclude that

λ ∈ L+
y ( f ) ⇒ λ ≥ λy . (11)

A similar reasoning also shows that

λ ∈ L+
y ( f ) ⇒ λ ≤ λy . (12)

Noting Eqs. (11) and (12) in Eq. (10) proves that L+
y ( f ) = [λy, λy].

(iii) Since f is strictly quasiconcave on the set L+
y ( f ) = [λy, λy], Eq. (3) implies

λ ∈ (λy, λy) ⇒ f (λ) > min{ f (λy)︸ ︷︷ ︸
y

, f (λy)︸ ︷︷ ︸
y

}

⇒ f (λ) > y ⇒ Ly( f ) ∩ (λy, λy) = ∅. (13)

However, from Ly( f ) ⊆ L+
y ( f ) and L+

y ( f ) = [λy, λy], we have Ly( f ) ⊆
[λy, λy] as well. Equation (13) therefore leads us to conclude that Ly( f ) ⊆
{λy, λy}. Since λy, λy ∈ Ly( f ) by definition, we get Ly( f ) = {λy, λy}, which
proves claim (iii). ��

Proposition 1 Let f : R → R satisfy assumptions A1–A3. Then f has a unique
global maximizer, that lies in L+

y ( f ) for each y ≥ f (0) which is such that Ly( f ) �= ∅.

Proof Let y ≥ f (0) be such that Ly( f ) �= ∅. Since L+
y ( f ) ⊇ Ly( f ), L+

y ( f ) is
nonempty as well. Part (ii) of theorem 1 shows that L+

y ( f ) is a compact interval.
Therefore the continuous function f attains its maximum in L+

y ( f ), which proves
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Fig. 1 The function λ �→ 1/(1+λ2) plotted in (a) satisfies conditions A0–A3. As predicted by Theorem 1,
notice that the upper level sets indicated in the figure are compact intervals. Figure (b) shows a pair of
functions f1 and f2 satisfying A0–A3. As predicted by Theorem 2, their minimum F (dashed black line)
satisfies these conditions as well, and has a unique maximizer λopt

the existence of a maximizer in L+
y ( f ). Let us demonstrate its uniqueness next. Let ŷ

denote themaximumof f over L+
y ( f ). If possible, let λ1 and λ2 be distinctmaximizers

of f in L+
y ( f ). Without loss of generality, let us assume that λ1 < λ2. Since L+

y ( f )

is an interval, [λ1, λ2] ⊆ L+
y ( f ). Then from Eq. (3), we have

λ ∈ (λ1, λ2) ⇒ f (λ) > min{ f (λ1)︸ ︷︷ ︸
ŷ

, f (λ2)︸ ︷︷ ︸
ŷ

} ⇒ f (λ) > ŷ. (14)

Equation (14) however contradicts the fact that ŷ is the maximum of f in L+
y ( f ).

Hence we conclude that f : L+
y ( f ) → R has a unique maximizer.

It remains to show that the maximizers identified in the upper level sets L+
y1( f )

and L+
y2( f ) are identical, provided that y1, y2 ≥ f (0) and the sets L+

y1( f ),L+
y2( f ) are

nonempty. Without loss of generality, let us assume that y1 > y2. Observe that L+
y1( f )

is a nonempty compact subset of L+
y2( f ), that f ≥ y1 on L+

y1( f ), and that f < y1
on L+

y2( f1) \ L+
y1( f ) by virtue of part (ii) of Theorem 1. Therefore the maximizer of

f : L+
y2( f ) �→ R necessarily lies in L+

y1( f ), and hence coincides with the maximizer
of f : L+

y1( f ) �→ R. The proposition now follows. ��
Figure 1 shows examples of functions satisfying conditions A0–A3 which are nei-

ther convex nor concave. The pair of functions f1 and f2 shown in Fig. 1b satisfy
A0–A3. Notice that their minimum F has a unique maximizer. Establishing this in
general is the purpose of Theorem 2. It is also clear from the figure that although f1
and f2 are smooth, F fails to be differentiable at a few points. Consequently, Newton-
type methods may fail to identify the maximizer of F correctly; Algorithms 1 and 2
discussed and analyzed in Sect. 3 provide alternatives instead.
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2.2 Existence, uniqueness and bounds for the optimizer

We are now ready to prove existence and uniqueness of the solution λopt to problem
(4). In Theorem 2 stated next, we denote

λy,α � min{λ ∈ Ly( fα)} and λy,α � max{λ ∈ Ly( fα)}, and set F � min
1≤α≤n

fα(lambda).

Theorem 2 Suppose that the functions { fα}n
α=1 each satisfy A0–A3. Then:

(i) F satisfies A0–A3.
(ii) F has a unique maximizer. Consequently, Eq. (4) has a unique solution.

(iii) For each y ≥ F(0) such that Ly(F) �= ∅, we have

Ly(F) = {Λy,Λy} where Λy � max
1≤α≤n

λy,α and Λy � min
1≤α≤n

λy,α,

and consequently the bounds

Λy ≤ λopt ≤ Λy . (15)

(iv) For the specific choice y0 = F(0), we have 0 ∈ {Λy0 ,Λy0} and the bounds

Λy0 ≤ λopt ≤ Λy0 . (16)

Proof (i) Feasibility, continuity and decay of F follow readily from its definition. Let
us verify A3, i.e., for y ≥ F(0), we need to show that F is strictly quasiconcave on
L+

y (F). We begin with a few observations. If L+
y (F) is either empty or a singleton,

there is nothing to prove. In the following therefore,we assume thatL+
y (F) contains

at least two distinct points. Since

L+
y (F) = ∩n

α=1L
+
y ( fα), (17)

each set L+
y ( fα) is nonempty. Then part (ii) of Theorem 1 implies that L+

y ( fα) =
[λy,α, λy,α]. It therefore follows from Eq. (17) that L+

y (F) is itself a compact
interval. Notice from

y ≥ F(0) ⇒ y ≥ min
1≤α≤n

fα(0) ⇒ y ≥ fα(0) ∀α ∈ {1, . . . , n} (18)

that each function fα is strictly quasiconcave on the set L+
y ( fα), and consequently,

over the common intersection L+
y (F).

We can now prove strict quasiconcavity of F over L+
y (F). Consider a pair of

distinct points λ1, λ2 ∈ L+
y (F), and without loss of generality, assume λ1 < λ2.

Since L+
y (F) has a nonempty interior (being a compact interval containing at least
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two distinct points), we know (λ1, λ2) ∈ L+
y (F) as well. Using the fact that each

function fα is strictly quasiconcave on L+
y (F), Eq. (3) yields

λ1 < λ3 < λ2 ⇒ fα(λ3) > min{ fα(λ1), fα(λ2)} ∀α ∈ {1, . . . , n}. (19)

Using Eq. (19) and the definition of F , we get

λ1 < λ3 < λ2 ⇒ F(λ3) = min
1≤α≤n

fα(λ3)

> min
1≤α≤n

min{ fα(λ1), fα(λ2)}
≥ min{ min

1≤α≤n
fα(λ1), min

1≤α≤n
fα(λ2)}

= min{F(λ1), F(λ2)},

which verifies condition A3 for F .
(ii) Set y0 = F(0) and notice that Ly0(F) contains 0 and is therefore nonempty.

Having verified in part (i) that F satisfies A1–A3, invoking proposition 1 with
y = y0 and f = F shows that F has a unique global maximizer, namely λopt.

(iii) Let y ≥ F(0) be such that Ly(F) �= ∅. We have

L+
y (F) = ∩1α≤nL

+
y ( fα) (see Eq. (17))

= ∩n
α=1

[
λy,α, λy,α

]
(using Eq. (18) and Theorem 1)

=
[
max
1≤α≤n

λy,α, min
1≤α≤n

λy,α

]

= [Λy,Λy] (20)

That Ly(F) = {Λy,Λy} now follows from Eq. (20) and part (iii) of Theorem 1.
Invoking Proposition 1 with f = F shows that λopt ∈ L+

y (F), i.e., λopt ∈
[Λy,Λy], which is the bound claimed in Eq. (15).

(iv) ThatΛy0 ≤ λopt ≤ Λy0 follows from setting y = y0 = F(0) in part (iii). Finally,

y0 = F(0) ⇒ 0 ∈ Ly0(F) ⇒ 0 ∈ {Λy0 ,Λy0},

where we have invoked part (iii) of Theorem 1 to deduce the second implication.
��

The choice y0 = F(0) is an obvious candidate satisfying the requirements y0 ≥
F(0) and Ly0(F) �= ∅ in Theorem 2. This is of course a consequence of explicitly
assuming that each function in { fα}α satisfies the feasibility condition A0. For y > y0,
the strict inclusion L+

y (F) � L+
y0(F) implies that the bounds Λy ≤ λopt ≤ Λy are

necessarily tighter than Λy0 ≤ λopt ≤ Λy0 . Indeed, choosing y = F(λopt) narrows

the bounds in Eq. (15) to the singleton Λy = Λy = λopt. However, it is not clear
how to choose y > y0 a priori, while ensuring Ly(F) �= ∅ and without incurring
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significant additional computations. Moreover, the examples in Sect. 4 reveal that the
bound Λy0 ≤ λopt ≤ Λy0 is quite useful as it is.

3 Resolution algorithms

We now take up the question of computing the optimizer λopt in problem (4). We
discuss two algorithms, both of which rely on λopt coinciding with either a maximum
of one of the functions in { fα}α or with a point where two or more among them
intersect. To this end, it is necessary for us to assume that the number of pairwise
intersections of functions in { fα}α is finite1. Such an assumption is reasonable in
max–min problems arising in the geometric mesh smoothing problem we consider
in Sect. 4. In general however, it is possible that distinct functions in { fα}α overlap
over finite intervals or intersect at infinitely many points. It then becomes necessary
to resort to interval-based algorithms instead [7].

In contrast to explicitly limiting the number of pairwise intersections, it is not
necessary for us to assume that the number of maxima of functions in { fα}α be finite.
As we show next, this is an automatic consequence of strict quasiconcavity.

Proposition 2 Let f : R → R satisfy assumptions A1–A3. If y ≥ f (0) is such that
Ly( f ) �= ∅ and λy < λy , then:

(i) f has no local maximizers in (λy, λy) besides the global maximizer, and

(ii) f has no local minimizers in (λy, λy).

Proof Let y satisfy the hypotheses in the statement.We prove both claims by reduction
to the absurd.

(i) Proposition 1 shows that f has a unique global maximizer in L+
y ( f ), say λ�.

Since part (ii) of Theorem 1 shows L+
y ( f ) = [λy, λy] and we have assumed

λy < λy , it follows that λ� ∈ (λy, λy). If possible, let λ ∈ (λy, λy) be a local
maximizer of f that is distinct from λ�. Without loss of generality, let us assume
that λ < λ�. Then, we can find ε > 0 such that λ + ε < λ� and f ≤ f (λ) on
(λ, λ+ε). Noting that f is strictly quasiconcave on the interval L+

y ( f ) containing
λ, λ + ε/2 and λ�, Eq. (3) yields

λ < λ + ε/2 < λ� ⇒ f (λ + ε/2) > min{ f (λ), f (λ�)︸ ︷︷ ︸
≥ f (λ)

}

⇒ f (λ + ε/2) > f (λ),

which contradicts the fact that f ≤ f (λ) on the interval (λ, λ + ε).
(ii) Next, suppose that λ ∈ (λy, λy) is a local minimum of f . Then we can find ε > 0

such that (λ − ε, λ + ε) ⊂ (λy, λy) and f ≥ f (λ) on (λ − ε, λ + ε). Since f

1 More precisely, we require the number of pairwise intersections of functions within the interval
[Λy0 ,Λy0 ] to be finite.
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is strictly quasiconcave on the interval L+
y ( f ) containing the points λ ± ε/2 and

λ, Eq. (3) shows

λ − ε/2 < λ < λ + ε/2 ⇒ f (λ) > min{ f (λ − ε/2)︸ ︷︷ ︸
≥ f (λ)

, f (λ + ε/2)︸ ︷︷ ︸
≥ f (λ)

}

⇒ f (λ) > f (λ),

which is of course absurd.

��

3.1 A naïve algorithm

Denote the set of all pairwise intersections of functions in { fα}α by

Λint = ∪1≤α<β≤n{λ ∈ R : fα(λ) = fβ(λ)}

and the set of (global) maximizers of the functions { fα}α by

Λmax = ∪1≤α≤n{λmax
α },

where λmax
α � argmaxλ∈R fα(λ) is the maximizer of fα (see Proposition 2). The first

algorithm for identifying the optimizer in Eq. (4) consists in exhaustively computing
all points in Λint ∪ Λmax. The rationale underlying Algorithm 1 is that if Λint is finite,
then λopt necessarily belongs to Λ � Λint ∪Λmax, as we show in Proposition 3 below.
Since we also know from Proposition 2 that Λmax is a finite set (containing at most
n distinct points), the line search in resolving λopt = argmaxλ∈R F(λ) is replaced by
the computation λopt = argmaxλ∈Λ F(λ), which only requires comparing the values
of F at finitely many points.

Algorithm 1 Brute force identification of the optimizer λopt for problem (4)
1: function NaïveCalcOptimizer({ fα}n

α=1)
Ensure: Functions { fα}α are distinct, satisfy conditions A0–A3 and the set Λint is finite
2: Initialize Λ = ∅
3: for α = 1 to n do
4: Update Λ ← Λ ∪ {λmax

α }
5: for β = α + 1 to n do
6: Update Λ ← Λ ∪ {λ ∈ R : fα(λ) = fβ(λ)}
7: end for
8: end for
9: return λopt = arg max

λ∈Λ

F(λ)

10: end function

Proposition 3 If the functions { fα}α satisfy assumptions A0–A3 and the set Λint is
finite, then λopt ∈ (Λint ∪ Λmax) \ {±∞}.
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Proof Let us show that λopt ∈ Λint∪Λmax. The decay assumptionA2 on each function
fα implies that Λint necessarily contains ±∞. Then, noting that Λint is a finite set, let

Λint = {λ0 = ∞ < λ1 . . . < λm < λm+1 = +∞}, (21)

for some m ∈ N. Evidently, the functions { fα}α are non-intersecting on each interval
(λs, λs+1), 0 ≤ s ≤ m. Hence for each s ∈ {0, . . . , m} we can find a unique index
αs ∈ {1, . . . , n} such that

fαs (λ) = F(λ) for λ ∈ Is � [λs, λs+1]. (22)

Setting y0 = F(0), observe using Eq. (15) that λopt ∈ L+
y0(F), and that

F = min
1≤α≤n

fα ⇒ L+
y0(F) = ∩n

α=1L
+
y0( fα) ⇒ L+

y0(F) ⊆ L+
y0( fα)∀α ∈ {1, . . . , n}.

(23)

We now have

λopt = arg max
λ∈R

F(λ) (by definition)

⇒ λopt ∈ L+
y0 (F) ∩

(
∪0≤s≤m{arg max

λ∈Is
F(λ)}

)
(λopt ∈ L+

y0 (F) and ∪0≤s≤m Is = R)

⇒ λopt ∈ L+
y0 (F) ∩

(
∪0≤s≤m{arg max

λ∈Is
fαs (λ)}

)
(from Eq. (22))

⇒ λopt ∈ ∪0≤s≤m

(
L+

y0 (F) ∩ {arg max
λ∈Is

fαs (λ)}
)

⇒ λopt ∈ ∪0≤s≤m

(
L+

y0 ( fαs ) ∩ {arg max
λ∈Is

fαs (λ)}
)

(using Eq. (23))

⇒ λopt ∈ ∪0≤s≤m{λs , λs+1, λ
max
αs

} (using Propositions 1 and 2)

⇒ λopt ∈ (∪0≤s≤m{λs , λs+1}
)

︸ ︷︷ ︸
Λint

∪ (∪1≤α≤n{λmax
α })

︸ ︷︷ ︸
Λmax

⇒ λopt ∈ Λint ∪ Λmax. (24)

Although it appears from Eqs. (21) and (24) that±∞ are candidates for the optimizer,
they can be safely discounted because F satisfies the feasibility and decay conditions.
That is, since

lim
λ→±∞ F(λ) = lim

λ→±∞ min
1≤α≤n

fα(λ) = min
1≤α≤n

lim
λ→±∞ fα(λ) = 0

and F(λopt) ≥ F(0) > 0, it is evident that λopt /∈ {±∞}. The claim now follows from
Eq. (24). ��

A few remarks concerning Algorithm 1 are in order.
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(i) Once intersections and maxima constituting the set Λ have been computed,
Proposition 3 guarantees that λopt necessarily belongs to Λ and Theorem 2 guar-
antees that identifying λopt simply as the point inΛwhere F has maximum value
is unambiguous.

(ii) An appealing feature of the algorithm is its simplicity. In particular, it does not
require identifying the functions in { fα}α that are active2 over distinct intervals
in R. Notice that in the proof of Proposition 3, specifically in Eq. (22), we do in
fact identify the active function fαs over the interval Is as an intermediate step.
This does not however manifest in the algorithm itself.

(iii) It may be possible to generalize Proposition 3 to include cases when Λint is not
finite. Even if correct, Algorithm 1 as given is unlikely to be applicable (or useful)
in such scenarios simply because Λ would still contain infinitely many points.

(iv) It is evident that the algorithm requires computing n maximizers of the functions
{ fα}α and intersections of n(n+1)/2 distinct pairs of functions. However, a large
number of these points are irrelevant for the purpose of identifying λopt. The
examples discussed in Sects. 4.4 and 4.6 convey this observation quite emphat-
ically. The algorithm also requires evaluating the objective at each point in Λ,
which is an expensive operation in itself because computing F at a point in turn
requires evaluating each of the functions { fα}α .

3.2 An algorithm based on limited construction of the objective

Scrutinizing Eq. (24) in the proof of Proposition 3 reveals that not tracking the active
functions defining F introduces a large number of unnecessary points in the set Λ

of candidate optimizers, which in turn renders Algorithm 1 expensive in practice.
We remedy this in Algorithm 2 by explicitly constructing F over a compact interval
containing λopt. Three aspects of the algorithm contribute to its efficiency:

– Limiting the construction of F to the the upper level set L+
y0(F) = [Λy0 ,Λy0 ],

where y0 = F(0).
– Tracking the active functions defining F within [Λy0 ,Λy0 ].
– Terminating the search for λopt once F is detected to be decreasing.

Algorithm 2 calls three functions CalcBounds, CalcMaximizer and FindAc-
tiveFunc. For the purpose of our current discussion, it suffices for us to know what
these functions compute:

(i) The function CalcBounds with signature

{Λy0 ,Λy0} = CalcBounds({ fα}α)

computes the bounds Λy0 = max1≤α≤n λy0,α and Λy0 = min1≤α≤n λy0,α iden-
tified in Eq. (16) for the optimizer. We adopt the convention that the function
returns two values even if Λy0 and Λy0 coincide.

2 We say that fα is active over the interval I if F = fα on I.
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Algorithm 2 Compute λopt in problem (4) by constructing F within [Λy0 ,Λy0 ]
1: function CalcOptimizer({ fα}n

α=1)
Ensure: Functions { fα}α are distinct, satisfy A0–A3 and the set Λint is finite
2: Compute {Λy0 , Λy0 } ← CalcBounds({ fα}α) � Note: 0 ∈ {Λy0 ,Λy0 }
3: if Λy0 = Λy0 then
4: return 0
5: end if
6: Initialize {αact, λnext} ← FindActiveFunc({ fα}α,Λy0 ,Λy0 )

7: Initialize λprev ← Λy0 � F = fαact on [λprev, λnext]
8: while true do
9: {λmax

αact ,flag} ← CalcMaximizer( fαact , λprev, λnext)
10: if flag = true then
11: return λmax

αact
12: end if
13: if fαact (λnext) < fαact (λprev) then
14: return λprev
15: end if
16: Update λprev ← λnext

17: Update {αact, λnext} ← FindActiveFunc({ fα}α, λprev, Λy0 )

18: end while
19: assert(false) � Impossible to be here
20: end function

(ii) The function CalcMaximizer with signature

{λmax
α ,flag} = CalcMaximizer( fα, λprev, λnext)

returns the boolean-valued parameter flag as true if the maximizer of fα lies in
the interval [λprev, λnext], and as false otherwise. If flag is returned as true, then
the maximizer argmaxλ∈R fα(λ) is returned as λmax

α .
(iii) The function FindActiveFunc with signature

{αact, λnext} = FindActiveFunc({ fα}α, λprev, λmax)

computes a coordinate λnext and an index αact ∈ {1, . . . , n} such that

λnext ∈ (
(λprev, λmax] ∩ Λint

) ∪ {λmax} and F = fαact on [λprev, λnext]. (25)

The details of how these three functions are implemented is not important. A few ideas
to facilitate a robust implementation are mentioned in Sect. 3.3.4 and at the end of the
discussion in Sect. 4.6.

3.3 Analysis of Algorithm 2

Our first goal in discussing Algorithm 2 is establishing the following result:

Theorem 3 If the functions { fα}α satisfy A0–A3 and the set Λint is finite, then Algo-
rithm 2 is well defined, terminates and returns λopt.
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In the statement, by the algorithm being well defined, we mean that each step is
unambiguous. Specifically, the function call CalcMaximizer appearing in Step 9
requires that λnext ≥ λprev. This is automatically ensured by eq. (25). The function
calls FindActiveFunc appearing in Steps 6, and 17 require that λprev < Λy0 . We will
therefore have to demonstrate that FindActiveFunc is never invoked with λprev =
Λy0 .

For the proof of Theorem 3, we proceed through a sequence of simple steps detailed
in Sects. 3.3.1 and 3.3.2. In the remainder of this section, we assume without explicit
mention that the hypotheses in Theorem 3 hold, i.e., that the functions { fα}α satisfy
A0–A3 and that the set Λint is finite. Similarly, we will freely use the fact that λopt is
unique as shown in Theorem 2.

The choice y0 = F(0) in the algorithm implies that Ly0(F) �= ∅. Hence Theorem 2
shows that λopt ∈ L+

y0(F) = [Λy0 ,Λy0 ]. Notice that if Λy0 = Λy0 , then the bounds

Λy0 ≤ λopt ≤ Λy0 from Eq. (16) implies that λopt coincides with the common value of

Λy0 andΛy0 , which by virtue of part (iv) of Theorem 2, is zero. This justifies Step 4 in

Algorithm 2, see Proposition 7. On the other hand, if Λy0 < Λy0 , then Proposition 1

shows that λopt ∈ (Λy0 ,Λy0). Therefore, we conclude that

{
λopt ∈ {Λy0 ,Λy0} ⇐⇒ Λy0 = Λy0 = 0

λopt ∈ (Λy0 ,Λy0) otherwise.
(26)

3.3.1 Iterations

If Λy0 < Λy0 , it follows from Eq. (25) that recursive calls of the form

{αs, λs} = FindActiveFunc({ fα}α, λs−1,Λy0)} with λ0 � Λy0 , s = 1, 2, . . .
(27)

identifies the sequences of points

{λ0 = Λy0 < λ1 < . . . < λN = Λy0} ⊆
(
[Λy0 ,Λy0 ] ∩ Λint

)
∪ {Λy0 ,Λy0}

and a corresponding sequence of indices {αs}N
s=1 ⊆ {1, . . . , n} such that

F = fαs over [λs−1, λs] for each 1 ≤ s ≤ N . (28)

That N is finite in Eq. (28) is a consequence of our assumption that Λint is a finite set.
Although an iteration counter is not explicitly used in the algorithm, it is convenient

to introduce one, say s, for the ensuing arguments. Initializing s to be 1 prior to Step 8
and incrementing it by 1 after Step 17, the sth iteration of the algorithm consists in
executing Steps 9 to 17 enclosed in the while loop when the iteration counter has value
s. In view of Eq. (28), we also identify λprev = λs−1, λnext = λs and αact = αs during
the sth iteration.
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Proposition 4 If Λy0 < Λy0 , then

λopt ∈ {λ1, . . . , λN−1} ∪
(
∪N

s=1

({λmax
αs

} ∩ (λs−1, λs)
))

. (29)

Proof From L+
y0(F) = [Λy0 ,Λy0 ] and Eq. (28), we have

λopt ∈ arg max
λ∈L+

y0
(F)

F(λ)

⇒ λopt ∈ ∪1≤s≤N arg max
λ∈[λs−1,λs ]

F(λ)

⇒ λopt ∈ ∪1≤s≤N arg max
λ∈[λs−1,λs ]

fαs (λ) (30)

In Eq. (30), observe that3

arg max
λ∈[λs−1,λs ]

fαs (λ) ⊆ {λs−1, λs} ∪ ({λmax
αs

} ∩ (λs−1, λs)
)
, (31)

where we have exploited the fact that fαs has no local maxima besides λmax
αs

, see
Propositions 1 and 2. Using Eq. (31) in Eq. (30), we get

λopt ∈ ∪1≤s≤N
({λs−1, λs} ∪ ({λmax

αs
} ∩ (λs−1, λs)

))

⇒ λopt ∈ (∪1≤s≤N {λs−1, λs}
)

︸ ︷︷ ︸
{λ0,λ1,...,λN }

∪
(
∪N

s=1

({λmax
αs

} ∩ (λs−1, λs)
))

. (32)

Equation (29) now follows from Eq. (32), because Eq. (26) specifically shows λopt /∈
{λ0, λN } when Λy0 < Λy0 . ��

Equation (29) represents a clear improvement over Proposition 3 for identifying
λopt, especially because {λ1, . . . , λN−1} is generally a small subset of Λint. In this
sense at least, we expect Algorithm 2 to be more efficient than Algorithm 1. This
prospect however comes at the expense of tracking the active functions defining F , as
required in the definition of the sequence {λs}s .

Proposition 5 If Λy0 < Λy0 and η ∈ [Λy0 ,Λy0 ], then

η < λs ≤ λopt

λopt ≤ λs < η

}
⇒ F(η) < F(λs) for 1 ≤ s < N . (33)

Notice that it is not necessary to consider the case s = N in Eq. (33)—whileλN ≤ λopt

is ruled out by the assumption Λy0 < Λy0 and Eq. (26), we are not interested in the
case η > λN .

3 Arguing as we did in Propositions 1 and 2, we can shows that fαs has a uniquemaximizer over [λs−1, λs ].
For the purpose of arriving at Eq. (32) however, the inclusion noted in Eq. (31) is sufficient.
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Proof Let us prove that

η < λs ≤ λopt ⇒ F(η) < F(λs) for 1 ≤ s < N . (34)

For s ∈ {1, . . . , N − 1}, we have

η < λs = λopt ⇒ η �= λopt ⇒ F(η) < F(λopt), (35)

which proves Eq. (34) when λs = λopt. If λs < λopt on the other hand, we use the fact
that F is strictly quasiconcave over L+

y0(F) from part (i) of Theorem 2. Noting that
η, λs, λopt ∈ L+

y0(F) in Eq. (3) shows

η < λs < λopt ⇒ F(λs) > min{ F(η)︸︷︷︸
<F(λopt)

, F(λopt)} ⇒ F(λs) > F(η). (36)

Equations (35) and (36) prove Eq. (34). We omit a proof of the remaining case λopt ≤
λs < η in Eq. (33), which follows along the same lines as Eqs. (35) and (36). ��

For the proof of Theorem 3, wewill mainly need the next corollary of Proposition 5,
which follows from choosing η to be either λs−1 or λs+1 in Eq. (33).

Corollary 1 If Λy0 < Λy0 and 1 ≤ s < N, then

λs ≤ λopt ⇒ F(λs−1) < F(λs). (37a)

λs ≥ λopt ⇒ F(λs+1) < F(λs). (37b)

Proposition 6 If Λy0 < Λy0 , then λmax
α1

�= λ0, λ
max
αN

�= λN and

s ∈ {1, . . . , N }, λmax
αs

∈ [λs−1, λs] ⇒ λopt = λmax
αs

. (38)

Proof Consider the possibility that λmax
α1

= λ0. Since λ0 is the maximizer of fα1 , we
have

λ0 <λ ≤ λN ⇒ F(λ) = min
1≤α≤n

fα(λ)

≤ fα1(λ) < fα1(λ0) = F(λ0) ⇒ F(λ) < F(λ0),

showing that λ0 is the maximizer of F in [λ0, λN ]. Hence λmax
α1

= λ0 ⇒ λopt = λ0,
which contradicts Eq. (26). Thereforewe conclude thatλmax

α1
�= λ0. A similar argument

shows that λmax
αN

= λN implies λopt = Λy0 , contradicting Eq. (26) again. Therefore
λmax

αN
�= λN either.

Let us proceed to proving Eq. (38). If λmax
αs

∈ (λs−1, λs), then λmax
αs

is a local
maximizer of F in the interval (λs−1, λs) and Proposition 2 implies that λmax

αs
= λopt.
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It remains to consider the possibilities λmax
αs

∈ {λs−1, λs}. Suppose that λmax
αs

= λs−1.
Since we have already shown that λmax

α1
�= λ0, we have 2 ≤ s ≤ N . Then,

F = min
1≤α≤n

fα ≤ fαs ≤ fαs (λ
max
αs

) = F(λs−1)

reveals that λs−1 is a maximizer of F . Proposition 2 then confirms that λopt = λs−1.
The remaining possibility, namely, λmax

αs
= λs is handled in a similar manner. ��

3.3.2 Termination and correctness

There are exactly three ways in which Algorithm 2 can terminate— at Steps 4, 11
or 14. We examine conditions for termination at each one of these steps and show that
the algorithm always returns the correct value of λopt in each case.

Proposition 7 If Λy0 = Λy0 , then Algorithm 2 terminates at Step 4 and returns λopt.

Proof If Λy0 = Λy0 , Eq. (26) shows that λopt equals the common value, which by
virtue of part (iv) of Theorem 2 is indeed zero. This observation justifies Step 4, where
the algorithm terminates. ��
Proposition 8 Suppose that Λy0 < Λy0 and λmax

αs
∈ [λs−1, λs] for some s ∈

{1, . . . , N }. Then Algorithm 2 terminates at Step 11 in the j th iteration, where
j � min{s : λmax

αs
∈ [λs−1, λs]}, and returns λopt.

Proof Since Λy0 < Λy0 , the algorithm does not terminate at Step 4. Therefore j ≥
1. If the algorithm reaches the j th iteration, then it is evident from the hypothesis
λmax

α j
∈ [λ j−1, λ j ] that the check in Step 10 is passed and consequently the algorithm

terminates at Step 11. Proposition 6 also shows that the algorithm returns the correct
value of λopt. To prove the proposition, we therefore need to show that the conditions
in Steps 10 and 13 are not satisfied during iterations 1 through j − 1, i.e., that

1 ≤ s ≤ j − 1 ⇒
{

λmax
αs

/∈ [λs−1, λs], (39a)

F(λs−1) < F(λs). (39b)

While (39a) is a consequence of the definition of index j in the statement, using
Eq. (37a) of corollary 1 shows

λopt ∈ [λ j−1, λ j ] ⇒ λ j−1 ≤ λopt ⇒ F(λs−1) < F(λs) for 1 ≤ s ≤ j − 1,

which proves (39b). ��
Proposition 9 Suppose that Λy0 < Λy0 . If λopt = λ j for some j ∈ {λ1, . . . , λN−1}
and λmax

α j
�= λ j , then Algorithm 2 terminates at Step 14 during the j th iteration and

returns λopt.
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Proof Since Λy0 < Λy0 , the algorithm does not terminate at Step 4. To prove the
proposition, we need verify three conditions—that the algorithm does not terminate
at Step 11 during iterations 1 through j , i.e.,

1 ≤ s ≤ j ⇒ λmax
αs

/∈ [λs−1, λs], (40)

that the algorithm does not terminate at Step 14 during iterations 1 through j − 1, i.e.,

1 ≤ s ≤ j − 1 ⇒ F(λs−1) < F(λs), (41)

and that the algorithm terminates at Step 14 at the j th iteration, i.e.,

F(λ j+1) < F(λ j ). (42)

Let us prove Eqs. (40) to (42). From Proposition 6, we know that

s ∈ {1, . . . , N }, λmax
αs

∈ [λs−1, λs] ⇒ λopt = λmax
αs

. (43)

Since we have assumed λopt = λ j , the contrapositive of Eq. (43) yields

λmax
αs

/∈ [λs−1, λs] for 1 ≤ s ≤ j − 1 (44a)

λmax
α j

/∈ [λ j−1, λ j ). (44b)

The explicit assumption λmax
α j

�= λ j together with Eq. (44b) shows that

λmax
α j

/∈ [λ j−1, λ j ]. (45)

Equation (40) now follows from Eqs. (44a) and (45). Noting λ j = λopt in Eqs. (37a)
and (37b) of corollary 1 proves Eqs. (41) and (42) respectively. ��

3.3.3 Proof of Theorem 3

From Eq. (26) and Proposition 4, we have

λopt ∈ {λ0, λN }︸ ︷︷ ︸
Λ0

∪ {λ1, . . . , λN−1}︸ ︷︷ ︸
Λ0

int

∪
(
∪N

s=1

({λmax
αs

} ∩ (λs−1, λs)
))

︸ ︷︷ ︸
Λ0

max

, (46)

In Eq. (46), observe that the setsΛ0,Λ0
int andΛ0

max are disjoint. If λopt ∈ Λ0, Eq. (26)
shows Λy0 = Λy0 . Then Proposition 7 proves our claim. Otherwise, Eq. (26) shows

that λopt /∈ Λ0 ⇒ Λy0 < Λy0 . If λopt ∈ Λ0
max, then there exists s ∈ {1, . . . , N }

such that λopt = {λmax
αs

} ∩ (λs−1, λs). In particular, λmax
αs

∈ [λs−1, λs] for some s, and
hence Proposition 8 proves our claim. Finally, consider the possibility λopt ∈ Λ0

int.
Let j ∈ {1, . . . , N − 1} be the (unique) index such that λopt = λ j . If λ j = λmax

α j
,
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Proposition 8 proves our claim. Otherwise, λ j �= λmax
α j

and the theorem follows from
Proposition 9.

3.3.4 Remarks on implementing Algorithm 2

(i) Owing to the choice y0 = F(0), Theorem 2 shows that 0 necessarily belongs
to {Λy0 ,Λy0}. Hence only one of Λy0 and Λy0 needs to be computed by Cal-
cBounds. With α0 such that fα0(0) = F(0), it is straightforward to identify
which one among Λy0 and Λy0 equals zero and which one needs to be com-
puted. For instance, if λy0,α0 = 0, then Λy0 = 0 and it suffices to compute

Λy0 .
(ii) When computing Λy0 or Λy0 , it is possible to avoid evaluating some of the

λy0,α’s and λy0,α’s by resorting to simple bracketing rules.
(iii) Routines to compute the level sets Ly0( fα) can exploit the fact that these sets

contains precisely one or two points. In the former case, λy0,α = λy0,α = 0 and
consequently, λopt = 0 as well.

(iv) Implementations of the routine CalcMaximizer can limit the search for the
maximizer λmax

αs
to the interval [λs−1, λs] during the sth iteration of the algo-

rithm. The parameter flag returned by the routine is specifically meant to
facilitate checking necessary conditions for this purpose, rather than explicitly
computing λmax

αs
and then verifying if it lies in [λs−1, λs]. Implementations can

also take advantage of the fact that fα has precisely one maximizer. We caution
that despite the claims in Proposition 2, the condition f ′

α = 0 is not sufficient
to identify λmax

α because such points may be points of inflection (assuming that
fα is differentiable).

(v) Since F is continuous at the points {λs}s identified in Eq. (28), the routine
FindActiveFunc can use the active function fαs known at the sth iteration to
efficiently identify the function fαs+1 that is active at the next iteration. The
arguments passed to the routine will of course have to be modified accordingly.

(vi) Ensuring that successive active functions are distinct, i.e., that αs �= αs+1, helps
avoid extraneous iterations in the algorithm. This can be realized by setting

λs+1 = max
{
λ ∈ (

(λs,Λy0 ] ∩ Λint
) ∪ { Λy0} : F = fαs+1 over [λs, λ]} .

(vii) The algorithm is not limited to the choice y0 = F(0), but applies for any
y > F(0)which is such that Ly(F) �= 0.Asmentioned in the remarks following
Theorem 2, choosing y > F(0) necessarily narrows the bounds for λopt.

(viii) If n is large or if λopt is far away from 0, it is possible that the algorithm
requires a large number of iterations to terminate. If it is acceptable to return
an approximate optimizer, then the algorithm can be terminated after a fixed
number of iterations. At the end of s iterations, λs+1 is the best approximation
to λopt. Alternatively, with y = F(λs), the algorithm can return the bounds
L+

y (F) = [Λy,Λy] as the interval containing the optimizer at the end of s
iterations.
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We intentionally refrain from providing generic algorithms for the routines Cal-
cBounds, CalcMaximizers and FindActiveFunc because incorporating the ideas
mentioned above is important in practice, but inevitably requires additional informa-
tion about the functions { fα}α .

3.4 Tolerances

An important caveat in our description and analysis of Algorithms 1 and 2 is the
consideration of tolerances. Tolerances are necessarily introduced by numerical com-
putations adopted for root finding and computations performed with finite precision.
We limit the discussion that follows to approximate calculation of roots (level sets,
intersections and maximizers) in Algorithms 1 and 2. In particular, we assume that the
objective is evaluated exactly and hence do not account for the errors introduced by
performing arithmetic with finite precision.

3.4.1 Effect of approximate root finding in Algorithm 1

Suppose that the points in the set Λ = {ξi }m
i=1 in Algorithm 1 are computed approxi-

mately, say as Λ′ = {ξ ′
i }m

i=1, where ξ ′
i is understood to be an approximation of ξi . We

are interested in comparing λopt = argmaxλ∈Λ F(λ) and λ′
opt = argmaxλ′∈Λ′ F(λ′),

with the intention of showing that they are close to each other if corresponding points
in Λ and Λ′ are themselves close.

Noting that Λ′ is a finite set with bounded elements, let X ⊂ R be a compact set
containing Λ′. Since F is uniformly continuous on X , given ε > 0, there exists δ > 0
such that

λ, λ′ ∈ X, |λ − λ′| < δ ⇒ |F(λ) − F(λ′)| < ε. (47)

Let us suppose that max1≤i≤m |ξi − ξ ′
i | < δ. Let λopt = ξI for some I ∈ {1, . . . , m},

while λ′
opt = ξ ′

J for some J ∈ {1, . . . , m} instead. Using Eq. (47) and the fact that
F(ξ ′

J ) ≥ F(ξ ′
I ), we get

F(λopt) − F(λ′
opt) = F(ξI ) − F(ξ ′

J ) ≤ F(ξI ) − F(ξ ′
I ) < ε. (48)

We would like to claim using Eq. (48) that λ′
opt is close to λopt. However, mere conti-

nuity of F does not suffice for this. As the next proposition shows, it is necessary to
exploit the fact that F has a unique maximizer4.

Proposition 10 Let f : X → R be a continuous map on a compact set X ⊂ R such
that f has a unique maximum at λ� ∈ X. Then the function

δ(ε) � max
λ∈X

{|λ − λ�| : f (λ) ≥ f (λ�) − ε} for ε ≥ 0 (49)

is well defined, monotonically non-increasing as ε ↘ 0 and limε↘0 δ(ε) = 0.

4 We thank Prof. Adrian Lew (Stanford University) for helpful discussions regarding Proposition 10.
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Proof Let ε ≥ 0 be arbitrary. Since f is continuous, Xε � {λ : f (λ) ≥ f (λ�)−ε} is a
closed subset of X . Compactness of X hence implies that Xε is compact.Weknow Xε is
non-empty because λ� ∈ Xε. Therefore δ(ε) = maxλ∈Xε |λ−λ�| is well defined. That
δ(ε) is non-decreasing is evident from 0 ≤ ε1 ≤ ε2 ⇒ Xε1 ⊆ Xε2 ⇒ δ(ε1) ≤ δ(ε2).

Since δ(ε) ≥ 0 for each ε ≥ 0, to prove limε↘0 δ(ε) exists and equals zero, it
suffices to demonstrate that lim supε↘0 δ(ε) = 0. We argue by contradiction. Suppose
that lim supε↘0 δ(ε) = 2η > 0. Then we can find a sequence {εn > 0}n such that
δ(εn) > η for each n ∈ N and εn ↘ 0. Noting that Xεn is non-empty and compact
for each n, set λn � argmaxx∈Xεn

|λ − λ�| so that |λn − λ�| = δ(εn) > η and
f (λn) ≥ f (λ�) − εn . Since X is compact, we can find a convergent subsequence
{λni }i , that converges to a limit, say, λ◦ ∈ X . Observe that |λ◦ − λ�| ≥ η > 0 and
f (λ◦) = f (λ�), which contradicts our assumption that f has a unique maximum at
λ�. ��

From Eqs. (48) and (49), we infer that

F(λopt) − F(λ′
opt) < ε ⇒ |λ′

opt − λopt| < δF (ε), (50)

for some function δF (ε) that is well defined, monotonically non-increasing, and such
that limε↘0 δF (ε) = 0. This guarantees that Algorithm 1 computes an approximate
optimizer λ′

opt that can be made arbitrarily close to the exact one λopt by improving
the accuracy of root finding algorithms used in computing pairwise intersections and
maxima of the functions { fα}α .

3.4.2 Effect of approximate root finding in Algorithm 2

In the context of Algorithm 2, approximate root finding translates to adding small
perturbations to the intersections {λs}N

s=0 and to the set of maxima {λmax
α }n

α=1. It is
clear that the algorithm is meaningful only if the errors in computing {λs}N

s=0 do not
alter the identification of the active functions defining F . Owing to continuity of the
functions { fα}α , small perturbations to {λs}N

s=0 result in small perturbations to F . Then
Proposition 10 ensures that the consequent changes in λopt remain small. This, roughly
speaking, is why we anticipate the algorithm to be stable to small approximations
in computing intersections and maxima. Although detailed arguments remain to be
worked out, it is instructive to consider an example.

Let λmax
αs

∈ [λs−1, λs] so that λopt = λmax
αs

by virtue of Proposition 6. Suppose that

the correct value of λmax
αs

is replaced by the approximate one λ̂max
αs

= λmax
αs

+ δ for

some small δ. Denoting the optimizer returned by the algorithm as λ̂opt, let us examine
the difference |λopt − λ̂opt|. Without loss of generality, we assume that the algorithm
does not terminate during the first (s − 1) iterations.

(i) If λ̂max
αs

∈ [λs−1, λs], then λ̂opt = λ̂max
αs

and hence

|λopt − λ̂opt| = |λmax
αs

− λ̂max
αs

| = δ.
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(ii) If λ̂max
αs

< λs−1 and fαs (λs−1) > fαs (λs), the algorithm terminates during the

sth iteration at Step 14 and returns λ̂opt = λs−1. Then

|λopt − λ̂opt| = |λmax
αs

− λs−1| < |λmax
αs

− λ̂max
αs

| = δ.

(iii) If λ̂max
αs

< λs−1 and fαs (λs−1) ≤ fαs (λs), then the algorithm terminates during

the (s + 1)th iteration at Step 14 (see corollary 1) and returns λ̂opt = λs . Setting
y = fαs (λ

max
αs

) and ε = fαs (λ
max
αs

) − fαs (λs−1), notice that λs−1 ∈ L+
y−ε( fαs )

by definition of ε and that λs ∈ L+
y−ε( fαs ) because fαs (λs) ≥ fαs (λs−1). Propo-

sition 10 therefore shows that λs − λs−1 < δF (ε). We now have

|λopt − λ̂opt| = |λmax
αs

− λs |
≤ |λmax

αs
− λ̂max

αs
|

︸ ︷︷ ︸
=δ

+ |λ̂max
αs

− λs−1|︸ ︷︷ ︸
≤|λ̂max

αs −λmax
αs |=δ

+ |λs−1 − λs |︸ ︷︷ ︸
≤δF (ε)

≤ 2δ + δF (ε).

(51)

In Eq. (51), δF (ε) is small because

λmax
αs

− λs−1 < λmax
αs

− λ̂max
α = δ,

which together with continuity of fαs , implies that ε is small.
(iv) If λ̂max

αs
> λs and fαs (λs−1) < fαs (λs), then the algorithm terminates during the

(s + 1)th iteration at Step 14 and returns λ̂opt = λs . Hence

|λopt − λ̂opt| = |λmax
αs

− λs | ≤ |λmax
αs

− λ̂max
αs

| = δ.

(v) Finally, suppose that λ̂max
αs

> λs and fαs (λs−1) > fαs (λs). The the algorithm

terminates during the sth iteration at Step 14 and returns λ̂opt = λs−1. Setting
y = fαs (λ

max
αs

) and ε = fαs (λ
max
αs

) − fαs (λs), we have λs ∈ L+
y−ε( fαs ) by

definition of ε and λs−1 ∈ L+
y−ε( fαs ) because fαs (λs−1) > fαs (λs). Reasoning

as we did in Eq. (51), we get

|λopt − λ̂opt| = |λmax
αs

− λs−1| ≤ |λmax
αs

− λ̂max
αs

| + |λ̂max
αs

− λs | + |λs − λs−1|
≤ 2δ + δF (ε),

where δ being small implies that ε is small and in turn that δF (ε) is small.

The above example substantiates our intuition on the stability of Algorithm 2 to
small approximations in root finding, but also confirms that the claim is a nontrivial
one requiring detailed arguments.
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Fig. 2 Ring of triangles
{Kα}n

α=1 around a vertex v

u1

u2

u3

u4u5

v

un

K1

K2

K3

K4

Kn

un−1

Kn−1

4 Application to geometric mesh improvement

By way of demonstrating an application of Algorithms 1 and 2, and as a means of
examining their performance, we consider an optimization-based method for improv-
ing qualities of unstructured meshes used in finite element simulations. The method,
termed directional vertex relaxation (dvr) and introduced in [18], perturbs a spec-
ified set of vertices in a mesh along prescribed directions without altering element
connectivities. The key ingredient in dvr is the sense of optimality defining vertex
perturbations, which naturally conjures a univariate discrete max–min problem analo-
gous to Eq. (1). Although applicable to general mesh types, we limit our explanations
of dvr to the case of planar triangle meshes and numerical experiments to triangle and
tetrahedral meshes for the sake of simplicity.

4.1 Optimal vertex perturbations in dvr

Referring to Fig. 2, consider planar triangles K1, K2, . . . , Kn sharing a commonvertex
v and label the vertices in triangle Kα by {v, uα, uα+1} for α = 1, . . . , n. To remain
consistent with the figure, we identify vertex un+1 with u1. Introduce a scalar-valued
function Q called the element quality metric, that is defined over the set of planar
triangles5 and that serves to measure triangle qualities. A triangle K is therefore
assigned a quality Q(K ). We adopt the convention that better- or more desirably-
shaped triangles are assigned higher qualities by Q. The metric Q can be defined
based on purely geometric criteria or in a data dependent manner using a priori or a
posteriori error estimates.

Our goal is to perturb v along a prescribed direction d such that the qualities of
triangles {Kα}n

α=1 improve in a certain sense. To help formulate the condition defining
the optimal perturbation for v, let us denote the trianglewith vertices {v+λd, uα, uα+1}
by K λ

α . Notice that K λ
α is the result of perturbing vertex v in triangle Kα to the location

v + λd. The optimal perturbation of v along the direction d is defined in dvr as

λopt � arg max
λ∈R

min
1≤α≤n

Q(K λ
α). (52)

5 We only request that Q be defined over triangles whose vertices do not all coincide.
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The identification fα(λ) = Q(K λ
α) for α = 1, . . . , n, transforms Eq. (52) into

λopt = arg max
λ∈R

min
1≤α≤n

fα(λ), (53)

which of course resembles Eq. (1). The rationale behind the vertex update v �→
v + λoptd is evident— it maximizes the poorest quality among the triangles around
the perturbed vertex.

4.2 Mean ratio metric

Whether λopt as defined in Eq. (52) exists and is unique, depends on the choice of
Q. In our numerical experiments here, we choose it to be the mean ratio metric [12],
which assigns the the quality

Q(K ) � 4
√
3μ(K )∑

1≤p<q≤3 �2pq(K )
, (54)

to a triangle K with signed area μ(K ), where the sign is decided using the right hand
rule for example, and where �pq(K ) is the length of the edge joining the pth and
q th vertices. The normalizing factor 4

√
3 is chosen so that equilateral triangles are

assigned unit quality. By adopting Eq. (54), the goal of mesh improvement is then
to render triangles that are as close to equilateral as possible. Properties of Q and its
equivalences with other commonly used quality metrics can be found in [19,20]. We
omit arguments demonstrating that if triangle K has strictly positive quality, then the
function λ �→ f (λ) = Q(K λ) with Q chosen to be the mean ratio metric satisfies
assumptionsA0–A3.While feasibility, continuity and decay conditions are immediate,
we mention that the map v �→ Q(K ) is strictly quasiconcave over circular upper level
sets corresponding to strictly positive element qualities. Consequently, λ �→ f (λ) is
strictly quasiconcave irrespective of the choice of d.

4.3 Roots, intersections and maxima

Since v �→ μ(Kα) is an affine function, so is λ �→ μ(K λ
α). Similarly, the sum

of squared edge lengths of K λ
α is a quadratic function of λ. Hence the functions

λ �→ fα(λ) are rational polynomials. This has a host of useful consequences, fore-
most amongwhich is the guarantee that the number of pairwise intersections of distinct
functions in { fα}α is finite. The requirement that Λint be a finite set in Algorithms 1
and 2 is therefore trivially satisfied. Besides, root finding in the algorithms is sig-
nificantly simplified—computing level sets and intersections requires the solution of
cubic polynomials while maximizers are roots of quadratics. Identifying distinct func-
tions among { fα}α becomes straightforward as well, requiring only a comparison of
polynomial coefficients.
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4.4 An example

Figure 3 shows an example of improving the qualities of triangles {Kα}6α=1 by per-
turbing their common vertex v. The poorest quality among the triangles shown in
Fig. 3a is Q(K4) = 0.103. Figure 3b shows the result of relocating v to v′ following
the Laplacian smoothing algorithm [21], wherein the Cartesian coordinates of v′ is
defined to be the arithmetic mean of the coordinates of vertices u1, . . . , u6. Notice
that v′ computed this way coincides with vertex u4, causing triangles K3 and K4 to
collapse. It is well known that Laplacian smoothing does not always yield admissi-
ble meshes, much less guarantee mesh improvement. Nevertheless, it continues to be
widely used because of its simplicity and ease of implementation.

Figure 3c shows the result of perturbing v to v̂ = v + λoptd, where d is prescribed
to be the unit vector oriented at 45◦ to the horizontal and λopt is computed as the
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Fig. 3 Improving qualities of triangles in (a) by perturbing their common vertex v. Figure (b) shows
that relocating v to v′ using the Laplacian smoothing algorithm results in triangles K3 and K4 becoming
degenerate. Optimizing the location of v along the direction d oriented at 45◦ to the horizontal by resolving
Eq. (52) results in the improved mesh shown in (c). The poorest element quality around v′ is improved to
0.357 from 0.103 around v. Details of the computation of λopt are shown in (d). Algorithm 1 exhaustively
computes all maximizers and intersections indicated by gray dots and identifies λopt from among them.
Algorithm 2 first computes the bounds Λy0 = −1.06 and Λy0 = 0, and then identifies the active functions
defining F as f4 over [−0.563, 0] and f6 over [−1.06,−0.563]. The optimizer is found to be the coordinate
λopt = −0.563 where f4 and f6 intersect
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solution of Eq. (52). The minimum element quality among triangles sharing vertex v̂

is improved to Q(K̂4) = Q(K̂6) = 0.357.
Figure 3d depicts the details involved in computing λopt using Algorithms 1 and

2. The figure shows the functions λ �→ fα(λ) for α = 1, . . . , 6 and the objective
λ �→ F(λ) that needs to be maximized. Observe that although the functions { fα}α are
smooth, F is not. The maximizer of F is located at λopt = −0.563 where the func-
tions f4 and f6 intersect. Algorithm 1 computes λopt by identifying all maximizers
and pairwise intersections. Algorithm 2 on the other hand, first computes the interval
[Λy0 ,Λy0 ] = [−1.06, 0], which evidently brackets λopt quite well, and then recon-
structs F within this interval while computing only a small fraction of the maximizers
and intersections compared to Algorithm 1.

4.5 Mesh improvement

Supplementing the example in Fig. 3, the numerical experiment discussed next consists
in iteratively perturbing an entire collection of vertices in a mesh to improve the
qualities of its elements. This examples serves to highlight the improvement in mesh
quality possible by sequentially repeating the procedure followed in Fig. 3 at the given
set of vertices.

Figure 4a shows a distorted mesh of triangles over a unit square. The poorest
element quality in the mesh is 0.0219. We seek to improve the mesh by perturbing its
interior vertices, while leaving the ones along the boundary undisturbed. Each iteration
in the dvr algorithm then consists in sequentially relaxing the interior vertices, with
each vertex perturbation computed by resolving a problem of type (52). For lack of
better alternatives, vertices are enumerated according to the node numbers assigned
by the mesh generator, and relaxed along the horizontal and vertical directions during
odd and even iterations, respectively. Figure 4b, c reveal the dramatic improvement
achieved within a few iterations of the dvr algorithm. The minimum element quality
in the mesh improves to 0.424 after 2 iterations and to 0.652 after 6 iterations. The
minimum element quality continues to improve monotonically with each iteration,

(a) Input mesh (b) 2 iterations (c) 6 iterations

Fig. 4 Mesh improvement with dvr. Figure (a) shows a distorted mesh over a unit square. Figures (b) and
(c) reveal that iteratively relaxing the interior vertices results in dramatic improvement in element qualities
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reaching a value of 0.815 at 20 iterations and converges approximately to the value
0.896 beyond about 30 iterations.

We conclude this example mentioning that the mesh improvement evident in this
example is not a coincidence, but is in fact guaranteed irrespective of the choice
of relaxation directions and the order in which vertices are relaxed. Monotonic
improvement of the poorest element quality is particularly significant in finite ele-
ment simulations, where the conditioning of linear systems of equations to be resolved
depends strongly on the minimum element quality in the underlying mesh [22]. We
refer to [18] for more details on dvr, its analysis, the guarantees for mesh improve-
ment it provides, and for its representative application to simulating moving boundary
problems.

4.6 Performance of Algorithms 1 and 2—a case study

In this third example, we consider improving qualities of elements in tetrahedral
meshes using dvr. Vertices in such meshes have reasonably large valencies (number
of elements incident at a vertex), at least when compared to those in planar triangle
meshes. For instance, valencies in the meshes used in the experiments discussed here
range from under 10 to over 70. These examples therefore help us to examine and
compare the performance of Algorithms 1 and 2 for a correspondingly large range of
n in problem (4).

We adopt the mean ratio metric for defining qualities of tetrahedra as well [23].
Analogous to Eq. (54), the quality of a tetrahedron K is given by

Q(K ) � 12 3
√
9 sign(μ(K )) |μ(K )|2/3∑

1≤p<q≤4 �2pq(K )
, (55)

where the constant 12 3
√
9 ensures that regular tetrahedra are assigned unit quality,

μ(K ) is the signed volume of K and �pq(K ) is the length of the edge joining its
pth and q th vertices. Arguing along the same lines as the two dimensional case, it is
possible to show that if K has positive quality, then λ �→ Q(K λ) satisfies assumptions
A0–A3. The map λ �→ Q(K λ) is of the form a(λ)2/3/b(λ), where λ �→ a(λ) is affine
and λ �→ b(λ) is quadratic. In particular, Q3(K ) is a rational polynomial. Therefore
distinct quality curves intersect at finitely many points, as required in Algorithms 1
and 2. Furthermore, maxima, intersections and level sets of element quality curves
can be computed as roots of polynomials.

The experiment discussed here consists in visiting all interior vertices in a tetra-
hedral mesh, computing the optimal perturbation of each vertex along the direction
d = (1, 0, 0) by resolving Eq. (52), and recording the number ofmaxima, intersections
and function inversions required. To this end, we construct five tetrahedralmesheswith
progressively larger number of vertices. Each mesh is the Delaunay triangulation of a
randomly generated set of points [24], and is explicitly checked to contain no degen-
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Fig. 5 A comparison of the performance of Algorithms 1 and 2 for optimizing the locations of interior
vertices in five tetrahedral meshes with randomly distributed vertices. Vertices in these meshes have widely
varying valencies. However, the operation count for Algorithm 1 reported in (a) corresponds to the valence
n ≈ 26. Then, comparing figures (a) and (b) reveals that Algorithm 1 requires the resolution of approxi-
mately 381 polynomials to compute λopt, while Algorithm 2 requires fewer than 8. The plots in (c) reveal
that the number of operations required in Algorithm 2 for a range of n remains relatively small

erate elements. Each interior vertex in such a mesh therefore furnishes a problem of
type Eq. (52), with n corresponding to the valence of the vertex6.

Figure 5a, b report the total number ofmaxima, intersections and function inversions
required in the five meshes when using Algorithms 1 and 2, respectively. Figure 5a
shows that Algorithm 1 computes approximately 26N maxima and 355N intersections
to optimize the locations of N vertices. Despite the widely varying vertex valencies, by
coincidence perhaps, Fig. 5a reflects the operation count of Algorithm 1 corresponding
to an “average valence” of n ≈ 26.

Contrasting Fig. 5a with the data for Algorithm 2 in Fig. 5b reveals the drastic
reduction in the number of computations required—identifying λopt usingAlgorithm 2
with n ≈ 26 roughly requires the resolution of only 8 polynomials compared to 381
in Algorithm 1. Figure 5c provides a representative snapshot of the computations in
Algorithm 2 for specific values of n realized at vertices with corresponding valencies,

6 In general, n is less than or equal to the valence of a vertex since the quality curves of two or more
elements may coincide. For the representative data in Fig. 5c, n equals the vertex valence.
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in each of the five meshes. The plot shows that the operation count in the algorithm
does not appear to increasewith n in any significantway. The boundΛy0 ≤ λopt ≤ Λy0
plays a critical role in relievingAlgorithm 2 frommany of the unnecessary calculations
performed in Algorithm 1. These bounds also help to conveniently circumvent the
need for any geometrically motivated restrictions on the magnitude of perturbations
commonly used in mesh smoothing methods, cf. [13].

It should be noted that the comparison in Fig. 5 does not reflect the number of
function evaluations required in the two algorithms. Unlike Algorithm 2, Algorithm 1
requires a large number of function evaluations since the objective F is evaluated
at each point in the set Λint ∪ Λmax, which in turn requires computing each of the n
functions in { fα}α at these points. In fact, profiling our implementation of Algorithm 1
reveals that close to half the execution time is consumed in evaluating F .

The exact details of our implementation of CalcBounds, CalcMaximizer and
FindActiveFunc are not crucial for interpreting the data in Fig. 5 for Algorithm 2.
We mention that checking necessary conditions for existence of roots (within relevant
intervals) using des Cartes rule of signs [25] in the routines CalcBounds and Find-
ActiveFunc helps to avoid many needless polynomial resolutions in the algorithm.
We did not employ such checks in CalcMaximizer since maximizers are just roots
of quadratic polynomials. Polynomial roots themselves are computed as eigenvalues
of a companion matrix [26,27]. Failure of Algorithm 2, though very rare, is limited to
nonconvergence of QR factorizations required in eigenvalue computations. A simple
rescaling of the polynomial equations improves the conditioning of the companion
matrix and renders the algorithm more reliable overall.

We recognize that it is unwise to draw general conclusions about the performance
of Algorithm 2 from Fig. 5; the operation count in the algorithm necessarily depends
on the data (i.e., the functions { fα}α). Nevertheless, this case study provides encour-
aging evidence that the algorithm is a useful and computationally efficient tool in the
challenging context of geometric mesh improvement.

5 Concluding remarks

We hope that the analysis and algorithms discussed here will benefit a general class of
problems where max–min/min–max criteria and quasiconvex/quasiconcave functions
appear naturally [15]. At least in the univariate case, Algorithm 2 provides a com-
pelling alternative to ad hoc solution strategies often resorted to in practice. For the
algorithm to be adopted in practical engineering applications, a detailed analysis of
the effect of tolerances on its accuracy, which was only briefly discussed in Sect. 3.4,
will be important. It may also be possible to improve the algorithm, for instance, by
identifying initial guesses closer to the optimizer (choosing y > y0) or by discarding
inactive functions from the computations altogether. We intend to pursue applica-
tions of this work to problems in geometric mesh optimization, a topic replete with
heuristic methods lacking meaningful guarantees and with justified concerns about
computational costs.
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