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Abstract. We introduce an iterative algorithm called directional vertex relaxation that seeks to
optimally perturb vertices in a mesh along prescribed directions without altering element connectiv-
ities. Each vertex update in the algorithm requires the solution of a max-min optimization problem
that is nonlinear, nonconvex, and nonsmooth. With relatively benign restrictions on element quality
metrics and on the input mesh, we show that these optimization problems are well posed and that
their resolution reduces to computing roots of scalar equations regardless of the type of the mesh
or the spatial dimension. We adopt a novel notion of mesh quality and prove that the qualities of
mesh iterates computed by the algorithm are nondecreasing. The algorithm is straightforward to
incorporate within existing mesh smoothing codes. We include numerical experiments which are
representative of applications in which directional vertex relaxation will be useful and which reveal
the improvement in triangle and tetrahedral mesh qualities possible with it.
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1. Introduction. We introduce, analyze, and examine the performance of direc-

tional vertex relaxation, an algorithm designed to improve mesh qualities by perturb-
ing a specified set of vertices along prescribed directions. Henceforth referred to as dvr,
directional vertex relaxation is an iterative algorithm in which vertices of a mesh are
perturbed sequentially. The defining feature of dvr is a vertexwise max-min problem
furnishing vertex updates in the algorithm. Each vertex update, while restricted to a
given direction, serves to maximize the poorest quality among the elements incident
at it.

Figure 1 illustrates the main idea behind dvr for relaxing a vertex in a triangle
mesh. For simplicity, we consider relaxing just the vertex v and choose the relaxation
direction to be vertical and horizontal during odd and even numbered iterations, re-
spectively. Assuming an element quality indicator that assigns higher qualities to
more regular-shaped triangles (see section 3.1 for a detailed definition), we find that
the poorest quality among the triangles K

1

, . . . ,K

4

incident at v is that of K

4

. Dur-
ing the first iteration, dvr computes the coordinate �

opt such that relocating v to
v

0 = v + �

opt e
y

maximizes the minimum among the qualities of the resulting four
triangles K

0
1

, . . . ,K

0
4

. The shape of triangle K

4

is visibly improved as a result. During
the second iteration, dvr computes �

opt such that relocating v

0 to v

00 = v

0 + �

opt e
x

maximizes the poorest quality among the resulting triangles K

00
1

, . . . ,K

00
4

. This pro-
cedure can be repeated indefinitely; in the example shown, however, no improvement
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Fig. 1. An illustration of the dvr algorithm for improving triangle qualities around a vertex v.
During the first iteration, v is relocated to v0 along the vertical direction by maximizing the function
� 7! Q

min

(�), which computes the poorest quality among the elements K
1

, . . . , K
4

as the common
vertex v is perturbed to v + � ey. Similarly, v0 is perturbed to v00 during the second iteration, this
time along the horizontal direction. In the figure, triangle qualities are defined using the mean ratio
metric.

is possible beyond two iterations.
The dvr algorithm is now straightforward to describe—given a mesh, an ordered

subset of its vertices that can be relaxed, and the directions along which these vertices
can be relaxed, each dvr iteration consists in repeating the procedure illustrated in
Figure 1, one vertex at a time. A detailed description of the algorithm and the
max-min problem defining vertex updates is given in section 2.

Among our main goals here is to rigorously answer a few compelling questions
concerning the dvr algorithm. First, how do we know that vertex updates in dvr
are well defined? That is, under what conditions are the max-min problems defining
optimal perturbations well posed? Second, how can we compute these optimal per-
turbations? A foolproof algorithm is essential because each vertex update requires the
resolution of a max-min problem. Third, in what sense, if at all, do vertex updates
computed by dvr improve the mesh quality? In particular, what can we say about the
quality of the poorest element in the mesh? The last point is particularly significant
in finite element computations, since the poorest element quality has a direct bear-
ing on the conditioning of finite element matrices and for the choice of increments
in time-stepping schemes. To this end, we examine su�cient conditions for the max-
min problems furnishing vertex updates to be well posed, identify simple yet robust
algorithms for resolving them, and prove monotonic improvement in mesh qualities
with each vertex update. The results on mesh quality improvement with each ver-
tex update in dvr (Theorems 4.2 and 4.10) have a broader significance for algorithms
relying on relaxing vertices one by one—it rigorously explains when and why local
improvements in element qualities resulting from sequential vertex updates improve
the mesh quality overall. Finally, through an extensive set of numerical experiments,
we demonstrate the enhancement in triangle and tetrahedral mesh qualities possible
with dvr. While the choice of relaxation directions has a definitive influence on the
quantum of mesh improvement possible with dvr, our experiments reveal that even
arbitrary ones (e.g., randomly generated or along the cardinal axes) yield meshes with
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A2440 R. RANGARAJAN AND A. LEW

significantly better qualities.
The guarantees a↵orded by dvr together with the lack of any heuristics render it a

useful tool for handling mesh deformations required for simulating moving boundary
problems. Such problems, which are ubiquitous in engineering, pose the challenge of
adapting meshes to conform to evolving fronts such as moving boundaries, interfaces,
cracks, and shocks [12]. Mesh updates in the vicinity of the moving front are required
after each time/load step when simulating a crack propagating through a solid, for
instance [46], or after every domain update during the iterative resolution of a shape
optimization problem [2, 56]. In such a context where interactive mesh improvement
is simply impossible, robustness of the algorithm adopted for preserving good mesh
quality is nonnegotiable for the feasibility and success of numerical simulations. This
is precisely what dvr accomplishes. Numerical experiments such as the ones presented
in section 5 reveal that dvr is a compelling choice when reasonably small and localized
vertex perturbations su�ce for mesh improvement. This is often the case when adapt-
ing meshes in the vicinity of a moving front, where perturbations comparable to the
local mesh size serve to preserve good element qualities while retaining a conforming
mesh.

We emphasize unequivocally that dvr is neither intended nor can it serve as a
comprehensive solution for mesh improvement. A cursory survey of the literature will
immediately reveal that a combination of mesh relaxation, topological operations (face
swapping, edge removal, etc.), and vertex insertion/removal operations can improve
a mesh by far more than if any one of these operations were performed in isolation
[30, 22, 23, 32, 4]. By design, therefore, dvr is predestined to neither be the best
nor the most sophisticated mesh improvement algorithm available. It is, however,
erroneous to presume that mesh improvement algorithms have attained maturity. To
quote [27], “mesh optimization procedures have a lot to do with black magic—even if
the ingredients required to construct a mesh optimization procedure are well known
(essentially swapping and smoothing), there is no known best recipe, i.e., no known
optimal way of combining those smoothing and swapping operators.’. In this context
at least, and especially for the purpose of simulating moving boundary problems, the
robustness guaranteed by dvr stands out.

Within the restricted context of geometric mesh quality optimization algorithms
which preserve element connectivities and improve a mesh by perturbing its vertices,
numerical experiments suggest that dvr is a competitive alternative to comparable
methods in the literature based on relaxing vertices one at a time. Though not rep-
resentative of the state of the art, Laplacian smoothing [40], with its well-recorded
shortcomings, falls in this category. A variant of Laplacian smoothing using weighted
averages rather than an arithmetic mean to relocate vertices can be found in [54]. Per-
haps the closest counterpart to dvr is the algorithm proposed in [19] and subsequently
expounded in [18, 20, 23], which di↵ers from dvr essentially in not restricting the di-
rections along which vertices are relaxed. Hence if the vertex updates proposed in [19]
were to be computed accurately by resolving the multidimensional analogue of the
max-min problem manifested in dvr, the resulting meshes would ostensibly have better
qualities than those computed by dvr. Herein lies a key di�culty—resolving the result-
ing nonlinear, nonsmooth, and nonconvex multivariate max-min problem is nontrivial
and inevitably requires adopting various ad hoc measures (e.g., linearizations, cou-
pling with intermittent Laplacian smoothing). Varied approaches have been proposed
to circumvent the complications arising from nonsmoothness, including derivative-free
optimization algorithms that resort to sampling the objective at a predefined stencil
of points [41]. In contrast, even though the vertex-update problem in dvr remains
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DIRECTIONAL VERTEX RELAXATION A2441

nonlinear, nonsmooth, and nonconvex, it is rendered one-dimensional by intention-
ally restricting the search directions. Then we exploit plausible features of the quality
metric (mainly convexity of certain level sets [3, 1, 45]) to accurately compute the
optimizer without resorting to any heuristics.

A second class of geometric mesh improvement algorithms we mention are ones
that permit relaxing multiple vertices simultaneously. Evidently, these algorithms
can explore mesh configurations that ones such as dvr relying on relaxing one vertex
at a time cannot and therefore may be able to compute meshes with better quali-
ties. However, this expectation is confounded by the choices for functionals that are
optimized in practice. The pervasive choice, namely `

p-norms of the set of element
qualities [61, 21, 33], are preferred because of the smoothness of the resulting opti-
mization problem. But such choices do not guarantee improvement in the minimum
element quality and require additional measures to prevent element inversions. The
challenge of resolving large multivariate optimization problems realized in these meth-
ods also remains an active area of research in the numerical optimization and meshing
literature [31, 60, 58, 38].

The distinction between algorithms that relax vertices sequentially and simulta-
neously may not always be evident. An example that helps illustrate this point can be
found in [50, 51], where the nonsmooth problem of maximizing the poorest element
quality in a mesh is approximated by a sequence of smooth problems with a modi-
fied objective function involving the entire set of vertices that may be perturbed. Of
course, the literature on numerical optimization is replete with approaches based on
resolving a sequence of regularized problems to approximate the solution of a nons-
mooth one; cf. [44]. A comparison of the performances of a vertex-by-vertex mesh
improvement algorithm with one that permits relaxing multiple vertices simultane-
ously for a representative set of meshes can be found in [15]. The open-source library
[8] provides a convenient way for conducting such tests, which are often helpful for
inferring useful rules of thumb for special classes or application-specific meshes. It is,
however, unclear whether any general conclusions can be deduced from them.

An alternative paradigm to optimization-based mesh improvement algorithms is
a large assortment of physics-based mesh relaxation methods. The ideas proposed
in this context range from ones invoking analogies with spring-mass systems [6, 17],
truss networks [43], linear/nonlinear elasticity [4, 13, 49], and harmonic/biharmonic
mappings [28], to name a few. Though found to work well “most of the time,” these
methods invariably fail to o↵er any guarantees for mesh improvement. For simulat-
ing moving boundary problems in particular, arbitrary Lagrangian-Eulerian [16, 35]
and moving mesh methods [29, 9, 59, 7] achieve adaptivity by introducing intimate
couplings between the underlying physical model and the mesh motion. Although
auxiliary sets of partial di↵erential equations to compute the mesh motion extend the
system to be solved, adaptation spanning length scales much larger than the typical
mesh size can be achieved. It is conceivable that a pairing between dvr and such mesh
motion schemes can help realize nonlocal mesh adaptation for the purpose of tailoring
meshes based on error estimators [5, 11] without sacrificing mesh quality. In such a
scenario, the nodal velocities can serve as a natural choice for the relaxation directions
in dvr.

In the remainder of the article, we have necessarily overlooked certain aspects
of mesh relaxation that are important in practice. This includes incorporating con-
straints to relax vertices restrained to lie on boundaries (curves and surfaces in gen-
eral); cf. [24, 25]. For the sake of definiteness, we consider meshes to be composed of
triangles in two spatial dimensions and tetrahedra in three dimensions in our descrip-
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A2442 R. RANGARAJAN AND A. LEW

tion of the dvr algorithm, its analysis, and in all the numerical experiments shown.
We emphasize, however, that there is no inherent limitation of the algorithm or of
its analysis to these specific mesh types—both apply verbatim to general mesh types
(quads, hexes, etc). However, detailed numerical investigations are necessary to ex-
amine the quantum of mesh improvement possible with specific mesh types. Similar
remarks also apply to the element quality metric adopted. The choice of quality
metric is intimately related to the purpose of mesh relaxation, and can therefore be
defined in a data-, size- or orientation-dependent manner, and to adapt meshes based
on error estimates in numerical simulations [5, 10]. In sections 4.1 and 4.3, we iden-
tify conditions on quality metrics that su�ce to ensure that the dvr algorithm is well
defined and to guarantee monotonic improvement in mesh qualities. These assump-
tions are not particularly restrictive but have to be verified on a case-by-case basis
nevertheless. The mean ratio metric [36, 37], which we adopt in all our examples, is
just one example of a quality metric satisfying all these requirements. By choosing
the mean ratio metric, the goal of mesh optimization in these examples is simply to
render triangles as close to equilateral and tetrahedra as close to regular as possible.
Minor adaptations of the metric, as described in [35, 39], for instance, enable tar-
geting alternative element shapes as well. We mention that the crucial assumption
concerning convexity of certain level sets is satisfied by many commonly used metrics
[3, 1].

2. Directional vertex relaxation. To describe the dvr algorithm and the se-
quence of mesh iterates computed by it, we briefly introduce some notation related
to multisets, triangulations, and orderings.

2.1. Multisets. It is convenient to consider lists of vertex coordinates and ele-
ment qualities to be multisets, so that distinct vertices and elements may have identical
coordinates and qualities, respectively. To this end, we recall the definition of multi-
sets as unordered lists in which members are permitted to appear more than once. To
explicitly distinguish sets from multisets, we denote the latter using braces in bold-
face {} and their unions with ]. For example, {1, 1, 2, 3, 3, 3, 3, 4} is a multiset and
{1, 1, 2, 3, 3, 3, 3, 4}]{4} = {1, 1, 2, 3, 3, 3, 3, 4, 4}, whereas the set {1, 1, 2, 3, 3, 3, 3, 4}
equals {1, 2, 3, 4}.

The function asc maps multisets in Rn to vectors in Rn with components arranged
in ascending order, i.e.,

asc({u
1

 u
2

 · · ·  u
n

}) , (u
1

,u
2

, . . . ,u
n

), n 2 N.(1)

The dimension n of the argument of asc will always be evident. For this reason, we
omit n from the notation used for asc. Note that asc(u) is sometimes referred to as
the lexicographic reordering of the components of a vector u 2 Rn; cf. [32].

2.2. An ordering relation � in Rn. We will soon introduce a notion of vector-
valued mesh qualities. To facilitate comparing meshes using their qualities, we intro-
duce an ordering � over Rn. Let u

i

denote the ith component of u 2 Rn, where
1  i  n. For a pair of vectors u,w 2 Rn, define the binary relation > as

u > w () u

i

> w

i

, where i = arg min
1jn

{u

j

6= w

j

}.(2)

For example, (1, 2, 3) > (1, 1.5, 4) in R3 with index i = 2 in definition (2). With
equality of vectors defined in a componentwise sense, it is easily checked that the
binary relation � defines a total ordering in Rn. For n = 1, the relation � is consistent
with the usual ordering over scalars.
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Fig. 2. An example explaining the notation introduced in section 2.3 for a triangle mesh
T . Figure 2a shows vertices 1, . . . , 5 and triangles K

1

, . . . , K
4

in the 1-ring of vertex 1. Hence
?
I (1;C) = {2, 3, 4, 5} and ?e (1; T ) = {K

1

, K
2

, K
3

, K
4

}. Relocating vertex 1 to V
1

+ �d
1

alters
the triangles in its 1-ring as shown in Figure 2b. The resulting mesh is denoted by T 1,� and the
minimum among the qualities of the resulting triangles {K�

1

, . . . , K�
4

} around vertex 1 by q
1,1(�, T ).

Notice that the perturbation shown in (b) may also alter the minimum quality among elements in
the 1-rings of vertices 2, . . . , 5. These qualities are denoted by q

1,2(�, T ), . . . , q
1,5(�, T ), respectively.

2.3. Triangulations. A triangulation T in Rd is a collection of d-simplices iden-
tified by (i) an index set I for its N vertices, (ii) a corresponding multiset V for their
coordinates identified with a set in

⇥
Rd

⇤
N , and (iii) a set of connectivities C consisting

of (d + 1)-tuples of indices in I. Hence T is defined as the 3-tuple T = (V, I,C). The
case d = 2 corresponds to a mesh of planar triangles and the case d = 3 to a mesh
of tetrahedra. The position of a vertex with index i 2 I in Rd is denoted by V

i

2 V
and a simplex K in T by K 2 T . For i 2 I, ?e (i; T ) denotes the set of simplices in
T sharing the vertex i and

?

I (i; C) ⇢ I \ {i} denotes the set of indices of vertices of
the simplices in ?e (i; T ) while omitting i. The arguments of

?

I emphasize its exclusive
dependence on the connectivity of the mesh. Figure 2 shows an example explaining
the identification of

?

I (i; C) and ?e (i; T ).

2.4. The algorithm. dvr is an iterative algorithm in which (i) the connectivity
C of a given triangulation T is maintained, (ii) the locations of a given collection
of vertices I

R

✓ I are altered while the remaining vertices in I \ I
R

are held fixed,
and (iii) the perturbation direction for each vertex i 2 I

R

is prescribed. We shall
reserve k to denote the iteration count and i, j for indices in I

R

. We assume I
R

to
be an ordered list of m vertices and, for convenience, that I

R

= (1, 2, . . . ,m). The
relaxation direction prescribed for i 2 I

R

during the kth iteration is denoted by d
k,i

.
We shall denote the mesh resulting from perturbing vertex i 2 I

R

of the mesh T
by a signed distance (i.e., coordinate) � 2 R by T i,� = (Vi,�

, I,C). For notational sim-
plicity, we omit explicitly mentioning the perturbation direction, since it is assumed
to be known from the context (iteration count). We label the element quality metric
by Q. The requisite properties for Q and specific examples for it will be discussed in
subsequent sections. For now, it su�ces to note that Q is a scalar-valued function
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A2444 R. RANGARAJAN AND A. LEW

defined over simplices in Rd and that Q assigns larger values to simplices of better
quality. We introduce the shorthand

q

i,j

(�, T ) , min{Q(K) : K 2 ?e (j, T i,�)} for � 2 R and i, j 2 I
R

(3)

to refer to the minimum among the qualities of simplices in the 1-ring of vertex j in the
mesh resulting from perturbing vertex i of T by a coordinate � along the prescribed
direction. In particular, perturbing vertex i can only alter the values of q

i,j

(�, T ) for
j 2

?

I (i; C) [ {i}; see Figure 2.

1 Algorithm 1: Directional vertex relaxation (dvr)
Input:
T = (V, I,C) : Input triangulation
I
R

= (1, . . . ,m) : Ordered list of vertices to relax
{d

k,i

}
i2IR,k2N : Relaxation directions

N

R

: Number of relaxation iterations

2 for k = 1 to NR do
3 for i = 1 to m do
4 Compute L , arg max

�2R q

i,i

(�, T )
5 if #L = 1 . Always satisfied for the mean ratio metric

6 then
7 Set �

opt  element in L
8 else

9 Find �

opt 2 arg max
�2L

asc({q

i,j

(T , �) : j 2
?

I (i,C) \ I
R

})
10 end
11 Update: V

i

 V
i

+ �

opt d
k,i

12 end
13 end
14 return (V, I,C)

dvr is defined by Algorithm 1. Therein, we have denoted the cardinality of the
set L by #L. Observe that arg max

�2L

asc(·) in step 9 implicitly uses the ordering
introduced in section 2.2. In the algorithm, we have also assumed the number of
relaxation iterations to be limited to N

R

; alternate termination criteria are discussed
in section 4.5.

2.5. Discussion of the algorithm. We use the example shown in Figure 2
to discuss the steps in Algorithm 1. Specifically, we will examine the finer points
involved in computing the update for vertex 1 in the mesh T shown in Figure 2a
during a representative iteration. For simplicity, we denote the relaxation direction
for vertex 1 by d

1

without explicit reference to the iteration counter.

2.5.1. Nonsmoothness. The crux in computing the optimal perturbation �

opt

for vertex 1 along d
1

lies in identifying the set of candidate coordinates

L = arg max
�2R

q

1,1

(�, T )

in step 4 of the algorithm. By definition (3), we have

q

1,1

(�, T ) , min{Q(K�

1

),Q(K�

2

),Q(K�

3

),Q(K�

4

)}.
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Presuming that Q is a smooth function of vertex coordinates of a triangle, � 7! Q(K�

`

)
is a smooth map for each ` = 1, . . . , 4. As a minimum over these smooth maps,
however, q

1,1

(�, T ) is expected to be continuous but not di↵erentiable with respect to
�. Consequently, L cannot be computed by straightforward derivative-based methods.

As discussed at length in section 1, nonsmoothness of the function being optimized
is a recurring challenge in mesh optimization methods that is invariably resolved by
regularizing the problem. Notice, for instance, that replacing q

1,1

(�, T ) by

q

reg

1,1

(�, T ) ,
�
Q(K�

1

)2 + Q(K�

2

)2 + Q(K�

3

)2 + Q(K�

4

)2
�
1/2

yields a smooth function of �. Hence maximizers of � 7! q

reg

1,1

(�, T ) can be easily
found using Newton-type methods. Such convenience, however, comes at an important
price. While the maximizer �

opt 2 arg max
�

q

1,1

(�, T ) in the dvr algorithm guarantees
improvement of the minimum quality among triangles in the 1-ring of vertex 1, i.e.,
q

1,1

(�opt

, T ) � q

1,1

(0, T ), no such guarantees exist for the maximizer of q

reg

1,1

(�, T ).

2.5.2. Computing maximizers. Despite the nonsmoothness of � 7! q

1,1

(�, T ),
reasonable assumptions on Q facilitate a straightforward calculation of its maximizers.
Specifically, if each smooth curve � 7! Q(K�

`

) for 1  `  4 has finitely many maxima,
and if each pair of distinct curves intersect at finitely many points, then computing the
maximizers of � 7! q

1,1

(�, T ) reduces to finding roots of (nonlinear) scalar equations;
see section 3.2 for details.

In practice, it is likely that L may be computed only approximately. This may be
a result of the choice of the numerical algorithm employed for the calculation or an
intentional compromise because approximations may be computable very e�ciently.
Irrespective of the reason, we have to acknowledge the possibility that not all max-
imizers of � 7! q

1,1

(�, T ) may be identified, and even the computed ones may be
approximate. The perturbation �

opt identified in practice may therefore be subopti-
mal. We consider such scenarios and their consequences in section 4.5.

2.5.3. Choice of optimal coordinate. If the map � 7! q

1,1

(�, T ) has a unique
maximizer, L is a singleton set and the choice of the optimal coordinate �

opt is obvious.
In section 4.3, we will identify certain convexity conditions on (level sets of) Q to
ensure that this is indeed the case. Algorithm 1, however, accommodates more general
quality metrics when it may be possible that multiple maximizers exist, i.e., #L > 1.
The rationale behind choosing �

opt using the more intricate check in step 9 of the
algorithm is related to ensuring monotonic mesh qualities and is discussed in section
4.3. We point out that the check in step 4 is in principle redundant, because step
9 identifies �

opt even in the case when #L = 1. Nevertheless, we include step 4 to
emphasize the simplification that results when � 7! q

1,1

(�, T ) has a unique maximizer.
By adopting the mean ratio metric defined in section 3.1, this is the case in all our
numerical experiments.

2.5.4. Relaxation directions. True to its name, the assumption of prescribed
relaxation directions plays a crucial role in dvr. It is by virtue of this assumption that
we arrive at a one-dimensional problem for computing vertex updates, irrespective
of the spatial dimension. The choice of relaxation directions directly influences the
improvement in mesh qualities possible with dvr. Numerical experiments presented
in the following section suggest providing at least d (the spatial dimension) linearly
independent relaxation directions for each vertex. Good choices for these directions
can result in drastic improvements in mesh quality, as well as reduce the number of
iterations required in the relaxation algorithm.
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A2446 R. RANGARAJAN AND A. LEW

2.5.5. Relaxation iterations. The optimization problem defining the update
for vertex 1 during the kth relaxation iteration is in general di↵erent from that real-
ized during the (k + 1)st iteration. This is because one or more among the vertices
2, . . . , 5 in its 1-ring may have been perturbed between successive updates of vertex
1. Furthermore, the direction prescribed for relaxing vertex 1 may be di↵erent dur-
ing successive iterations, which again contributes to rendering di↵erent optimization
problems for its update during each iteration. In Theorem 4.2, we will prove that with
certain reasonable assumptions on the quality metric and on the quality of the initial
mesh, each vertex update in dvr can only improve the mesh quality. It is therefore
desirable to perform multiple iterations of the algorithm until either mesh qualities
have converged or are deemed to have improved su�ciently. For simplicity, we have
limited the number of iterations to N

R

in Algorithm 1.

3. The mean ratio metric, vector-valued mesh qualities, and illustra-
tive examples. Before proceeding to scrutinize the performance of Algorithm 1 and
properties of the meshes it computes, we pause to discuss additional details involved
in implementing the algorithm. For this purpose, we adopt a specific element qual-
ity metric, namely the mean ratio metric. In fact, we use the mean ratio metric
for measuring simplex qualities in all our numerical experiments improving triangle
and tetrahedral meshes. Here we recall the definition of the mean ratio metric and
highlight a few of its important properties. Then we introduce a vector-valued notion
for measuring mesh qualities and discuss using it in conjunction with the ordering
relation defined in section 2.2 to compare the qualities of mesh iterates computed by
dvr. Deferring a detailed examination of the performance of dvr and its representative
applications to section 5, we present a couple of illustrative examples at the end of
this section which, besides providing a glimpse of the mesh improvement possible with
dvr, also serve to set the stage for the analysis that follows in section 4.

3.1. The mean ratio metric for element quality. Let µ(K) denote the
signed measure of simplex K (signed area in case of a triangle and signed volume
in case of a tetrahedron) and `

pq

(K) denote the length of the edge joining its pth and
qth vertices. The mean ratio metric introduced in [36] is defined as

Q(K) , C(d)
sgn(µ(K))|µ2/d(K)|X

1p<qd+1

`

2

pq

(K)
, where

(
C(2) = 4

p
3,

C(3) = 12 3
p

9.

(4)

The metric (4) is dimensionless, independent of the size of the simplex (invariant under
homogeneous dilations), invariant under isometric coordinate transformations, equals
zero if and only if the simplex is degenerate, has the same sign as the orientation of
the simplex, and has a unique extremum equal to a maximum when the simplex is
regular [5, 36, 42]. The dimension-dependent normalization factor C(d) is chosen such
that regular simplices are assigned value 1. Hence equilateral triangles and regular
tetrahedra have unit quality. The triangle quality defined by (4) is related to other
commonly used quality metrics. For instance, it is equivalent1 to the metric defined
as the minimum interior angle of K and weakly equivalent to the aspect ratio metric
which is defined as the ratio of the inradius to the circumradius of the triangle. Further

1The element quality metrics Q
1

and Q
2

are weakly equivalent if there exist positive constants
c
1

, c
2

, ↵, and � such that c
1

Q↵
1

(K)  Q
2

(K)  c
2

Q�
2

(K) for arbitrary K with Q
1

(K) > 0. They are
equivalent if ↵ = � = 1.
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Q = 1 Q = 0.4Q = 0.5Q = 0.9
Q = 0.75

Fig. 3. Triangles with qualities defined using the metric in (4). With two vertices held fixed,
the locus of the third vertex to achieve a prescribed quality is a circle. Analogously, the locus of the
free vertex in a tetrahedron with prescribed quality is a sphere (not shown here).

examples of triangle/tetrahedron quality metrics and their relationships can be found
in [34, 37, 42]. Figure 3 shows examples of triangles with a few di↵erent qualities, as
defined by (4). The figure also shows the circular level sets of Q(K) as a function of
the position of one of the vertices of triangle K.

3.2. Computing maximizers in dvr with the mean ratio metric. Following
the discussions in section 2.5.2, let us reexamine the problem of identifying maximizers
of � 7! q

1,1

(�, T ) for the example in Figure 2, with Q given by (4) this time. Without
loss of generality, we assume that the maps {� 7! Q(K�

`

) : 1  `  4} are distinct.
When this is not the case, i.e., when one or more of these maps coincide, we simply
retain the set of unique ones, since these will su�ce for defining � 7! q

1,1

(�, T )
and in turn for identifying its maximizer. We are now concerned with computing
L = arg max

�2R min
1`4

Q(K�

`

).
Straightforward algebraic computations using the expressions for Q in (4) reveal

that extrema of the curve � 7! Q(K�

`

) are roots of a quadratic polynomial in � while
intersection points of a pair of distinct curves � 7! Q(K�

`1
) and � 7! Q(K�

`2
) are roots

of a cubic polynomial. In particular,

L↵

max

, {⌘ 2 R : Q(K�

↵

) has a local maximum at � = ⌘} for 1  ↵  4,(5a)

L↵�

int

, {� 2 R : Q(K�

↵

) = Q(K�

�

)} for 1  ↵ < �  4;(5b)

each contain finitely many points (at most two and three, respectively, to be pre-
cise). Then successive points in L

int

, {±1}[
1↵<�4

L↵�

int

define intervals over
which � 7! q

1,1

(�, T ) equals one of the smooth functions {� 7! Q(K�

`

)}4

`=1

. With
L

max

, [p

↵=1

L↵

max

, it is therefore evident that

L ✓ L
max

[ L
int

.(6)

In addition to showing that L contains finitely many points, (6) provides a practical
method of computing L. We highlight that contrary to what (6) suggests, the points
±1 are in fact not candidates for the optimizer and can therefore be discarded from
L. This will be evident from the conditions on the quality metric and the input mesh
discussed in section 4.

The above discussions referring to the example in Figure 2 apply verbatim to
general triangle meshes, as well as to tetrahedral meshes. In the latter case, the
only distinction worth noting is that computing the set of pairwise intersections of
distinct quality curves, i.e., the set L↵�

int

, requires the resolution of an octic polynomial.
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Nevertheless, L
max

[ L
int

remains a finite set and is straightforward to compute.
1 Algorithm 2: Candidate perturbation coordinates

Input:
T = (V, I,C) : Triangulation
i 2 I

R

: Vertex to be relaxed
d

k,i

: Prescribed relaxation direction for i during the kth relaxation iteration

2 Set {K

i↵}p

↵=1

, ?e (i, (V, I,C)) . Elements in the 1-ring of i

3 Reduce p and reindex until {� 7! Q(K�

i↵
)}p

↵=1

are distinct curves
4 Set L

cand

, ; . Set of candidate optimizers

5 for ↵ = 1 to p do
. Append local maximizers

6 L
cand

 L
cand

[ {⌘ : � 7! Q(K�

ij
) has a local maximum at � = ⌘}

7 for � = ↵ + 1 to p do
. Append pairwise intersections

8 L
cand

 L
cand

[ {� : Q(K�

i↵
) = Q(K�

i�
)}

9 end
10 end
11 return L = arg max

�2Lcand q

i,i

(�, T )
Algorithm 2 provides a summary of the steps involved in identifying the set L in

step 4 of Algorithm 1, provided that #(L
max

[L
int

) <1. While the simple algebraic
form of the mean ratio metric helped us to confirm this rather easily, the requirement
needs to be independently checked for alternative choices of quality metrics. The
main point of Algorithm 2 is that the computing L = arg max

�2R q

i,i

(T , �) required
in Algorithm 1 is replaced by the simpler calculation L = arg max

�2Lcand q

i,i

(T , �)
in Algorithm 2. The latter only requires comparing the qualities of elements in the
1-ring of i at the finitely many points in the set L

cand

. In [45], we describe a more
e�cient alternative to Algorithm 2 for computing L that exploits properties of the
quality metric discussed in section 4. We in fact use the algorithm from [45] for some
of the examples in section 5 that require a large number of vertices to be relaxed.

3.3. Vertex updates: A 2-element example. Figure 4 provides a graphical
illustration of Algorithm 2 in a simple example where a vertex v

1

having just two
triangles K

1

and K

2

in its 1-ring is perturbed along a prescribed direction d
1

. Let
K

�

1

and K

�

2

denote the triangles with vertices {v

1

+�d
1

, v

2

, v

3

} and {v

1

+�d
1

, v

4

, v

5

},
respectively. Algorithm 2 identifies (i) the set of local maxima L1

max

and L2

max

of the
curves � 7! Q(K�

1

), � 7! Q(K�

2

), respectively, by solving a pair of quadratic equations
and (ii) the set of points L12

int

where the two curves intersect by finding roots of a
cubic polynomial. Then the desired set of maximizers L = min{Q(K�

1

),Q(K�

2

)} is
necessarily contained in L

cand

= L1

max

[ L2

max

[ L12

in

.
Figure 4 explains the identification of the optimal perturbation �

opt in L
cand

for
two di↵erent choices of d

1

. In Figure 4a, where d
1

is vertical, we observe that �

opt

equals the coordinate at which � 7! Q(K�

1

) is maximized. When d
1

is inclined at
30� to the horizontal as shown in Figure 4b, �

opt

equals the coordinate at which the
two quality curves intersect. The final triangle shapes following the vertex update
v

new

1

= v

1

+ �

opt d
1

are also shown. Observe that for both choices of d
1

, we found a
unique optimal coordinate in this example. We will see in section 4.3 why this is to
be expected when using the mean ratio metric.

The general case in which p triangles {K

↵

}p

↵=1

are incident at v

1

is now easily
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(a) When v
1

is perturbed along the vertical direction, the qualities Q(K�
1

) and Q(K�
2

) of the
perturbed triangles as a function of the coordinate � along the perturbation direction are shown on
the right. The optimal perturbation �opt = 0.25 occurs at the maximum of the curve � 7! Q(K�

1

).
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(b) When the perturbation direction is inclined at 30� to the horizontal, the optimal coordinate
�opt = 0.125 occurs at the intersection of the two quality curves. As a result, the qualities of
triangles K

1

and K
2

are altered from 0.65 and 0.90, respectively, to a common optimal value of 0.8.

Fig. 4. The vertex v
1

common to triangles K
1

and K
2

is perturbed along a prescribed direction
to maximize the smaller among the qualities of the resulting triangles.

handled. We identify the maxima of each quality curve and their pairwise intersec-
tions; the optimal perturbation necessarily equals one of these computed coordinates.
Noting that we have a unique optimizer when using the mean ratio metric, �

opt is
identified by evaluating element qualities at the computed points and picking the
coordinate at which the poorest element quality in the 1-ring of v

1

is maximized.

3.4. Vector-valued mesh quality. With the intention of monitoring qualities
of mesh iterates computed in dvr, it is straightforward to define a measure for mesh
quality once an element quality metric Q is chosen (the mean ratio metric (4) is just
one example for Q). Common definitions for mesh qualities are predominantly as
`

p-norms of the sequence of its element qualities. An alternate and more stringent
metric relevant to finite element methods consists in defining the mesh quality as the
minimum among the qualities of all its elements.

In contrast to the di↵erent scalar-valued measures of mesh quality possible, we
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1

K2
K1

K3
K4

K5

K6

K7
2

K1
K7

K8

K14

K15
K16

K2
K1

K8
K9 3

4

K6

K7 K10

K11

K12K13
K14

T

?e (1, T )
?e (2, T )

?e (3, T )?e (4, T )
1

2
4

K2

K1

K3
K4

K5

K6

K7
K8

K9
K10

K11

K12K13
K14

K15
K16

3

I
R

= (1, 2, 3, 4)

Fig. 5. An illustrated explanation of the definition of the mesh quality Q(T ). For the choice
I
R

= (1, 2, 3, 4), triangles in the 1-ring of each vertex in I
R

are shown on the right. In each
1-ring, the triangle possessing the poorest quality is highlighted in gray. For vertices 1, 2, 3, and
4, these triangles are K

1

, K
1

, K
1

, and K
12

, respectively. Assuming Q(K
1

)  Q(K
12

), we have
Q(T ) = (Q(K

1

), Q(K
1

), Q(K
1

), Q(K
12

)). Notice that Q(T ) is very di↵erent from just a list of all
the element qualities in T . For example, Q(K

1

) appears thrice in Q(T ).

introduce a vector-valued mesh quality metric Q that facilitates evaluating the per-
formance and analyzing the properties of the dvr algorithm. To this end, note that for
a given mesh T = (V, I,C) to be improved, the meshes computed in the dvr algorithm
necessarily belong to the family

Pert(T ) = {(V0
, I,C) : V0 2

⇥
Rd

⇤
N

,V0
j

= V
j

if j 2 I \ I
R

}(7)

irrespective of the prescribed relaxation directions. Each mesh in Pert(T ) has the
same set of vertices and the same connectivity as T , but their vertices in I

R

can
assume arbitrary locations. Then we define Q : Pert(T )! Rm as

Q(S) , asc
⇣
]

i2IR{ min{Q(K) : K 2 ?e (i;S)}}
⌘

, S 2 Pert(T ).(8)

Hence the vector Q(S) contains the minimum element quality in the 1-ring of each
vertex in I

R

and has its components sorted in ascending order. We refer to Q(S)
as the vector-valued quality of the mesh S, or simply as the quality of S. We have
intentionally omitted the dependence of Pert(T ) and Q on I

R

in favor of notational
simplicity, since the choice of I

R

will always be clear from the context. Figure 5 shows
an example to further clarify the interpretation of (8).

Equipped with (8), we can now compare the qualities of any pair of triangulations
in Pert(T ) using the ordering � on Rm. We say that the meshes S

1

,S
2

2 Pert(T )
have identical qualities if Q(S

1

) = Q(S
2

) as vectors in Rm and that S
1

has better
quality than S

2

if Q(S
1

) > Q(S
2

).
We highlight a few significant features of the mesh quality vector Q.

(i) The first component Q
1

(S) of the mesh quality Q(S) equals the minimum
among the qualities of all simplices that can be perturbed in S (i.e., simplices having
at least one vertex in I

R

). We have already alluded to the importance of Q
1

(S) in
finite element methods in section 1.
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(a) unrelaxed mesh (b) 10 iterations (c) 50 iterations
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Fig. 6. The Delaunay triangulation of a random set of points is improved by relaxing the
interior vertices using dvr. Qualities of a few mesh iterates are plotted in (d). Since relaxation
directions are randomly generated, (e) examines mesh qualities at the end of a fixed number of
iterations in 100 di↵erent trials. Observe the consistent improvement in mesh quality and that Q

1

is improved by factors close to 100.

(ii) It is possible, and is indeed regularly the case, that the quality of the same
element in S appears multiple times in the mesh quality vector Q(S). In fact, defi-
nition (8) naturally accentuates the influence of elements with poor qualities on the
mesh quality vector Q(S). This should be contrasted with definitions for mesh quality
that deliberately introduce “weighting” factors associated with each element [48].

(iii) In general, equality of Q only defines an equivalence relation over Pert(T ),
since it is possible that Q(S

1

) = Q(S
2

) even though S
1

and S
2

have di↵erent lists of
coordinates. This observation implies that convergence of mesh qualities in the dvr
algorithm may not imply convergence of triangulations themselves.

(iv) We emphasize the distinction between Q(S) and the list of element qualities
sorted in ascending order that is sometimes considered in the literature [32]. That
Q(S) is di↵erent from the latter vector should be evident simply from recognizing that
the two have di↵erent lengths in general. Similarly, the quality of the same element
may recur multiple times in Q(S), which is not the case with the sorted list of element
qualities.

3.5. Example with a triangle mesh. Figure 6a shows the Delaunay triangu-
lation of a set of 99 randomly distributed points in a unit square. The distribution
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Algorithm 1: range observed after 
50 iterations in 100 trials

unrelaxed mesh

Laplacian smoothing

(50 iterations)

 40
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 1  20  60  80  100  120
Index

0.618

0.766

0.654

d

random 
relaxations

Fig. 7. Optimizing a tetrahedral mesh by relaxing its vertices along randomly generated directions.

of vertices results in many triangles with poor qualities. Since the triangulation is
Delaunay, their qualities (as measured by the minimum interior angle) cannot be im-
proved further by altering the connectivity of the mesh alone. Instead, we seek to
maintain its connectivity and improve the mesh by perturbing its vertices using dvr.

In this example, all 86 interior vertices in the mesh are relaxed while those along
the boundary are held fixed. The relaxed vertices are ordered according to their node
numbers assigned arbitrarily by the mesh generator to create the list I

R

. For lack of
a more natural alternative, a new relaxation direction d

k,i

is randomly generated for
each vertex i 2 I

R

at each relaxation iteration k.
Figures 6b and 6c show the meshes computed at the end of 10 and 50 iterations,

respectively, for one set of relaxation directions realized in Algorithm 1. Inspecting
the components of Q plotted in Figure 6d reveals that at the end of 50 iterations,
the first component Q

1

of Q, which equals the minimum among the qualities of all
triangles in the mesh, is improved by a factor of 100. The figure also highlights an
important feature of dvr—to improve triangles with poorer qualities, the qualities of
better-shaped ones are intentionally sacrificed. Between the 10th and 50th iterations,
we see that the first 55 components of Q are improved significantly at the expense of
the remaining components.

Since relaxation directions are chosen randomly, we examine multiple realizations
for them while retaining the same definition of I

R

. Inspecting the results from 100
di↵erent trials shown in Figure 6e reveals consistent improvement in mesh qualities by
factors exceeding 80 for the first component. We emphasize that such improvement
is despite the arbitrary choice of relaxation directions.

3.6. Example with a tetrahedral mesh. Figure 7 shows results from an
analogous experiment to improve a mesh of tetrahedra by relaxing its vertices. The
input mesh of unit cube has 295 vertices and 1184 tetrahedra and can be retrieved
from [52, mesh: cube1k]. We choose I

R

to be the set of all 135 interior vertices while
leaving the vertices on the boundary of the cube fixed. At each iteration of Algorithm
1, the relaxation direction for each vertex is randomly generated.

Comparing the components of Q for the unrelaxed mesh and the range of values
observed at the end of 50 iterations in 100 di↵erent trials, we observe consistent
improvement in mesh qualities. The plot also shows the result of 50 iterations of
Laplacian smoothing. In this example, Laplacian smoothing in fact yields a mesh
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with a poorer quality compared to the unrelaxed one.

4. Analysis of the directional vertex relaxation algorithm. The examples
in the previous section provide encouraging evidence of the improvement in mesh
qualities possible with dvr. Now we ask what guarantees of mesh improvement are
extended by the algorithm. Our main result to this end is Theorem 4.2, which shows
that the sequence of mesh iterates computed by dvr has monotonic (nondecreasing)
qualities, provided that the initial mesh has no degenerate/inverted elements and
the element quality metric Q satisfies a few reasonable assumptions. We start by
identifying conditions for the algorithm to be well defined in the first place.

4.1. Existence of optimal perturbations. Evidently, Algorithm 1 is well de-
fined if the set L = arg max

�2R q

i,i

(�, T ) is nonempty for each i 2 I
R

at each iteration.
To this end, we identify su�cient conditions on Q. Let K(x

0

,x
1

, . . . ,x
d

) denote the
simplex with vertices x

0

,x
1

, . . . ,x
d

2 Rd, and let us denote the Euclidean norm of
x 2 Rd by kxk

d

. We consider the following restrictions:
A1. Degeneracy: µ(K) = 0 () Q(K) = 0 if the vertices of K do not all

coincide.
A2. Continuity: Q(K(x

0

, . . . ,x
d

)) is continuous function on [Rd]d+1 \ Id, where
Id , {(x, . . . ,x) : x 2 Rd}.

A3. Decay: Q(K(x,x
1

, . . . ,x
d

))! 0 as kxk
d

!1 for any (x
1

, . . . ,x
d

) 2 [Rd]d.
These conditions are straightforward to interpret. In particular, A3 states that the
quality of a simplex should approach zero when one of its vertices is moved far enough
while holding all the others fixed. Thus if the quality of a simplex is initially positive,
moving any one of its vertices far enough will result in a simplex with lower quality.

Let Z(T ) consist of triangulations in Pert(T ) that have at least one simplex in
which all d + 1 vertices coincide, and set RegPert(T ) , Pert(T ) \ Z(T ).

Proposition 4.1. If Q satisfies A1–A2 and Q
1

(T ) > 0, then the following hold:

(i) � 7! q

i,j

(�, T ) is continuous for each i, j 2 I
R

.

(ii) � 7! Q(T i,�) is continuous for each i 2 I
R

.

(iii) Q : RegPert(T )! Rm

is continuous.

(iv) If Q additionally satisfies A3, then the set {� 2 R : q

i,j

(�, T ) �
q

i,j

(0, T )} is compact.

We omit a detailed proof of the proposition but provide a sketch of the steps
involved. Inferences (i) to (iii) follow from noting that Q

1

(T ) > 0 precludes the
possibility of degenerate simplices in T and from recognizing Q as a composition
of continuous maps (both Q and asc are continuous). To prove (iv), observe that
since Q(K) � Q

1

(T ) > 0 for each K 2 T , conditions A2 and A3 imply that the
set {� 2 R : Q(K(x + �d,x

1

, . . . ,x
d

)) � Q
1

(T )} is bounded and hence compact
(irrespective of the choice of perturbation direction d). Therefore its closed subset
{� 2 R : q

i,j

(�, T ) � q

i,j

(0, T )} is compact as well.
Inferences (i) and (iv) of the proposition show that the first vertex update in the

dvr algorithm is well defined. To infer the same about subsequent updates, however,
we will need to show Q

1

remains positive in the algorithm. We will show this in
Theorem 4.2.

4.2. Main result: Monotonicity of mesh qualities. Our main result of this
section is the following.

Theorem 4.2 (mesh qualities in dvr). Given T , let T
k,i

denote the triangulation

computed upon updating the position of vertex i 2 I
R

during the kth iteration of
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A2454 R. RANGARAJAN AND A. LEW

Algorithm 1, and set T
k+1,0

= T
k,m

. If Q satisfies A1–A3 and if Q
1

(T ) > 0, then the

following hold:

(i) T
k,i

is well defined for each k 2 N and i 2 I
R

.

(ii) For each k 2 N, i 2 I
R

, and � 2 R,

Q(T
k,i

) � Q(T i,�

k,i�1

).(9)

(iii) The sequence of mesh qualities computed in dvr is nondecreasing, i.e.,

Q(T )  Q(T
1,1

) · · ·  Q(T
1,m

)  · · ·Q(T
k,1

) · · ·  Q(T
k,m

) · · ·(10)

(iv) The sequence (Q
1

(T ),Q
1

(T
1,1

), . . . ,Q
1

(T
1,m

), . . . ,Q
1

(T
k,1

), . . . ,Q
1

(T
k,m

), . . .)
is nondecreasing and hence convergent.

Before commencing the proof, we highlight a few observations.
(i) Equation (10) reveals that each vertex update in dvr can only improve the

mesh quality, just as observed in the examples in sections 3.5 and 3.6.
(ii) By definition in Algorithm 1, updating the position of a vertex in I

R

can
only improve the quality of the poorest element in its 1-ring. Then the claim of
monotonicity of mesh qualities in (10) seems reasonable. It is, however, not trivial,
because improvement in the quality of the poorest element in a 1-ring may be achieved
at the expense of reducing the qualities of some of the remaining elements. Specifically,
a vertex update alters not just one but multiple components of the mesh quality vector
in general. For example, observe in Figure 2 that updating the location of vertex 1
alters not only the contribution of vertex 1 to the mesh quality but may change the
contributions of vertices 2, . . . , 5 as well. Examining such changes to the mesh quality
with vertex updates is the main intent of the proof.

(iii) The assumption Q
1

(T ) > 0 requires that the qualities of all perturbable
simplices in the initial mesh be positive. As stated therefore, Theorem 4.2 precludes
meshes with degenerate/inverted simplices. Nevertheless, we emphasize that Q

1

(T ) >

0 is a conservative su�cient condition and that often the conclusions of the theorem
hold even when Q

1

(T ) < 0. The example discussed in section 5.3 in fact has Q
1

(T ) <

0; see Figure 13.
(iv) Though claim (iv) is an immediate consequence of (10), we make a special

note of it owing to the significance of Q

1

in finite element computations.
(v) Property (10) can be guaranteed even with suboptimal choices of perturba-

tions. We present one possibility in Algorithm 3 in section 4.4. Property (9), however,
is a feature of the optimal choice in Algorithm 1.

We commence the proof of Theorem 4.2 by introducing a couple of useful prop-
erties of the ordering �. We omit their proofs, which are straightforward and follow
from exercising definition (1).

Proposition 4.3. Let p, q 2 N, and let multisets u 2 Rp

and v,w 2 Rq

. Then

asc(v) = asc(w) () asc(u ] v) = asc(u ]w),(11a)
asc(v) > asc(w) () asc(u ] v) > asc(u ]w).(11b)

Proposition 4.4. Let p 2 N, ⇤ ⇢ R be nonempty, and let f : ⇤ ! Rp

. If ⇤ is

compact and f is continuous, then arg max
�2⇤

f(�) 6= ;.
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In the following intermediate results, we extensively employ the shorthand

Q(T i,�) = asc(A
i

(T ) ] B
i,�

(T )), where

8
><

>:

A
i

(T ) , {q

i,j

(0, T ) : j 2 I
R

\ J
i

},

B
i,�

(T ) , {q

i,j

(�, T ) : j 2 J
i

},

J
i

, (
?

I (i,C) \ I
R

) [ {i}

(12)

for i 2 I
R

and � 2 R. The motivation behind introducing (12) is that B
i,�

(T ) collects
those components of Q(T i,�) that can change when vertex i is perturbed by a coor-
dinate �, while the multiset A

i

(T ) identifies the remaining una↵ected components.

Lemma 4.5. Given T , i 2 I
R

, and �, ⌘ 2 R,

(13)
q

i,i

(�, T ) > q

i,i

(⌘, T )) asc(B
i,�

(T )) > asc(B
i,⌘

(T )) () Q(T i,�) > Q(T i,⌘).

Proof. The equivalence in (13) is a consequence of Proposition 4.3 and (12):

asc(B
i,�

(T )) > asc(B
i,⌘

(T )) () asc(A
i

(T ) ] B
i,�

(T )) > asc(A
i

(T ) ] B
i,⌘

(T ))

() Q(T i,�) > Q(T i,⌘).

Let us prove the first implication claimed in (13). Without loss of generality, let us
assume that ⌘ = 0, J

i

\ {i} = {1, 2, . . . , p} and

q

i,1

(0)  q

i,2

(0)  · · ·  q

i,p

(0).(14)

Noting that the case p = 0 is trivial, we additionally suppose that p > 0 in the
following. Denote u = asc(B

i,0

(T )) and w = asc(B
i,�

(T )). For ⇣ 2 R, consider the
minimum among the qualities of simplices in T i,⇣ that belong to the 1-rings of both
vertices i and j, namely

q

ij(⇣, T ) , min{Q(K) : K 2 ?e (i, T i,⇣)\ ?e (j, T i,⇣)} for 1  j  p.(15)

The function ⇣ 7! q

ij(⇣, T ) in (15) is well defined, because ?e (i, T i,⇣)\ ?e (j, T i,⇣)
necessarily contains at least one simplex. Observe that

q

i,j

(⇣, T ) = min{q

i,j

(0, T ), qij(⇣, T )} for 1  j  p.(16)

Using q

ij(�, T ) � q

i,i

(�, T ) > q

i,i

(0, T ) and (16), we have the following:

If q

i,j

(0, T )  q

i,i

(0, T ), then q

i,j

(�, T ) = min{q

i,j

(0, T )
| {z }
qi,i(0,T )

, q

ij(�, T )| {z }
>qi,i(0,T )

} = q

i,j

(0, T ).
(17a)

If q

i,j

(0, T ) > q

i,i

(0, T ), then q

i,j

(�, T ) = min{q

i,j

(0, T )
| {z }
>qi,i(0,T )

, q

ij(�, T )| {z }
>qi,i(0,T )

} > q

i,i

(0, T ).
(17b)

In the following, we repeatedly use (14), (17), and the assumption q

i,i

(�, T ) >

q

i,i

(0, T ) to show that w > u.
First, suppose that q

i,i

(0, T ) < q

i,1

(0, T ). Then

(18)
u

1

= q

i,i

(0, T )
w

1

= min{q

i,j

(�, T ) : j 2 J
i

} > q

i,i

(0, T )

)
) w

1

> u

1

) w > u.
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Next, suppose that q

i,p

(0, T )  q

i,i

(0, T ). Then

(19)
w

j

= u

j

= q

i,j

(0, T ) for 1  j  p

w

p+1

= q

i,i

(�, T ) > q

i,i

(0, T ) = u

p+1

)
) w > u.

Otherwise, we can find index ` such that 1  ` < p and q

i,`

(0, T )  q

i,i

(0, T ) <

q

i,`+1

(0, T ). Then
(20)

w

j

= u

j

= q

i,j

(0, T ) for 1  j  `

w

`+1

= min{q

i,i

(�, T ), q
i,`+1

(�, T ), . . . , q
i,p

(�, T )} > q

i,i

(0, T ) = u

`+1

)
) w > u.

Equations (18)–(20) prove the implication claimed in (13).

Proposition 4.6. Given T and i 2 I
R

,

arg max
�2R

asc(B
i,�

(T )) = arg max
�2R

Q(T i,�) ✓ arg max
�2R

q

i,i

(�, T ).(21)

Proof. From Proposition 4.3 and Lemma 4.5, we have

asc(B
i,�

(T )) � asc(B
i,⌘

(T )) () Q(T i,�) � Q(T i,⌘),

which implies that

arg max
�2R

asc(B
i,�

(T )) = arg max
�2R

Q(T i,�).(22)

Moreover, from the contrapositive of (13), namely

�, ⌘ 2 R, Q(T i,�) � Q(T i,⌘)) q

i,i

(�, T ) � q

i,i

(⌘, T ),

we get that

arg max
�2R

Q(T i,�) ✓ arg max
�2R

q

i,i

(�).(23)

Equations (22) and (23) prove (21).

Proposition 4.7. Given T and i 2 I
R

and Q satisfying A1–A3,

Q
1

(T ) > 0) arg max
�2R

Q(T i,�) 6= ;.(24)

Proof. Let j 2 J
i

be an index such that q

i,j

(0, T ) equals the minimum among the
elements in B

i,0

(T ). Let ⇤ , {� : q

i,j

(�, T ) � q

i,j

(0, T )}. From (21) and the choice
of j, we know that

arg max
�2R

asc(B
i,�

(T )) ✓ arg max
�2R

q

i,i

(�) ✓ ⇤,

which implies that

arg max
�2R

asc(B
i,�

(T )) = arg max
�2⇤

asc(B
i,�

(T )).(25)

Using Q
1

(T ) > 0 in Proposition 4.1 shows that ⇤ is compact. Additionally, ⇤ is
nonempty, because 0 2 ⇤. Hence we conclude from Proposition 4.4 that

arg max
�2⇤

asc(B
i,�

) 6= ;.

Equation (24) now follows from (21) and (25).
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Proof of Theorem 4.2. Fix k 2 N and i 2 I
R

. Suppose we can show that

(
T

k,i�1

is well defined,

Q
1

(T
k,i�1

) > 0
=)

8
><

>:

T
k,i

is well defined,

Q(T
k,i

) � Q(T i,�

k,i�1

) 8� 2 R,

Q
1

(T
k,i

) > 0.

(26)

Then, since we have assumed Q
1

(T
1,0

) = Q
1

(T ) > 0, claims (i) and (ii) in the
statement will follow from (26) by induction. Choosing � = 0 in (10) shows that
Q(T

k,i

) � Q(T
k,i�1

) for each k 2 N and i 2 I
R

. Claim (iii) then follows from choosing
indices k and i. Claim (iv) is an immediate consequence of (10).

Let us assume that T
k,i�1

,Q
1

(T
k,i�1

) > 0 and prove (26). Let

L , arg max
�2R

q

i,i

(�, T
k,i�1

) and S , arg max
�2R

Q(T i,�

k,i�1

).

From Proposition 4.7, we know that

; 6= arg max
�2R

asc(B
i,�

(T
k,i�1

)) = S ✓ L.(27)

By definition in Algorithm 1, T
k,i

= T i,�

opt

k,i�1

, where

�

opt 2 arg max
�2L

asc(B
i,�

(T
k,i�1

)).

Since (27) implies arg max
�2L

asc(B
i,�

(T
k,i�1

)) = arg max
�2R asc(B

i,�

(T
k,i�1

)) 6= ;,
we know that �

opt exists and therefore T
k,i

is well defined. Additionally, (27) shows
that �

opt 2 S, from where we conclude that

Q(T
k,i

) = Q(T i,�

opt

k,i�1

) � Q(T i,�

k,i�1

) 8� 2 R.(28)

Choosing � = 0 in (28) yields Q(T
k,i

) � Q(T
k,i�1

), which in turn implies that
Q

1

(T
k,i

) � Q
1

(T
k,i�1

) > 0. Equation (26) follows.

Remark 4.8. Following the steps in the proof of Theorem 4.2 reveals that the
result is applicable in a more general context in which vertex updates need not be
restricted to prescribed directions; cf. [22, 20]. To this end, let q

i,j

(�, T ) be de-
fined analogous to (3) by replacing �d

k,i

with � 2 Rd. Consider any well defined
vertex update algorithm V

i

7! V
i

+ �opt with �opt 2 Rd satisfying the condition
q

i,i

(�opt

, T ) > q

i,i

(⌘, T )8⌘ 6= �opt. Then the sequence of mesh iterates computed
by such an algorithm also enjoy properties (ii)–(iv) of Theorem 4.2. In particular,
properties (ii)–(iv) are not specific to the dvr algorithm, which assumes a prescribed
relaxation direction. A similar remark applies also to Theorem 4.10 concerning sub-
optimal perturbations.

4.3. Uniqueness of optimal perturbation coordinates. In general, � 7!
q

i,i

(�, T ) may not have a unique maximizer. More crucially, some of the maximizers
of q

i,i

(�, T ) may not be maximizers of Q(T i,�). Indeed, depending on the choice of
Q, the inclusion in (21) can be strict. When � 7! q

i,i

(�, T ) has multiple maximizers,
choosing �

opt arbitrarily as one of them may in fact result in violating property (10)
or even yield a mesh with a lower quality than the unperturbed one. This distinction
between maximizers of � 7! Q(T i,�) and � 7! q

i,i

(�, T ), despite the inclusion shown
by (21), is precisely the reason behind the check in step 9 in Algorithm 1. The check
identifies the coordinate(s) that best improve the mesh quality.
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A2458 R. RANGARAJAN AND A. LEW

With additional restrictions on Q, it is possible to ensure that � 7! q

i,i

(�, T ) has
a unique maximizer; see also [1]. Then, from (21) and (24), we can conclude that
the maximizer of � 7! q

i,i

(�, T ) is the unique maximizer of � 7! Q(T i,�) as well. To
facilitate stating these conditions, some additional notation is helpful. Recalling that
K(x

0

, . . . ,x
d

) denotes the simplex with vertices x
0

, . . . ,x
d

2 Rd, for ↵ 2 R, define

S

ge

↵

(x
1

, . . . ,x
d

) , {x 2 Rd : Q(K(x,x
1

, . . . ,x
d

)) � ↵},(29a)

S

g

↵

(x
1

, . . . ,x
d

) , {x 2 Rd : Q(K(x,x
1

, . . . ,x
d

)) > ↵}.(29b)

We consider the following restrictions on Q:
A4. Boundedness: Q is bounded from above. Without loss of generality, Q  1.
A5. Unique global maximizer: S

ge

1

(x
1

, . . . ,x
d

) is a singleton.
A6. Strict convexity of level sets: For 0 < ↵ < 1, S

ge

↵

(x
1

, . . . ,x
d

) is a strictly
convex set in Rd and int(Sge

↵

(x
1

, . . . ,x
d

)) = S

g

↵

(x
1

, . . . ,x
d

).

Proposition 4.9. Let T be given and i 2 I
R

. If Q
1

(T ) > 0 and Q satisfies A1–
A6, then � 7! q

i,i

(�, T ) has a unique maximizer. Consequently, � 7! Q(T i,�) has a

unique maximizer and arg max
�2R q

i,i

(�, T ) = arg max
�2R Q(T i,�).

Proof. Let us show that L , arg max
�2R q

i,i

(�, T ) is a singleton. The subsequent
claims then follow from (21).

Noting assumptions A1–A3 and Q
1

(T ) > 0 in Proposition 4.7 shows that L is
nonempty. Let ↵ = max

�2R q

i,i

(�, T ). Assumption A4 and q

i,i

(0, T ) � Q
1

(T ) > 0
imply that 0 < ↵  1. If ↵ = 1, the L is a singleton by virtue of assumption A5.

It remains to consider the possibility 0 < ↵ < 1. For x 2 Rd, let T i,x denote
the triangulation obtained by positioning vertex i in T at x. Denote {K

x

ij
}p

j=1

= ?e
(i; T i,x). From assumptions A3 and A6 and ↵ < 1, we know that ⇢

↵,j

, {x 2 Rd :
Q(Kx

ij
) � ↵} is strictly convex and bounded for each 1  j  p. Consequently, each

set ⇤
↵,j

, {� 2 R : V
i

+ �d
i

2 ⇢

↵,j

} is a compact interval in R, where d
i

is the
relaxation direction prescribed for V

i

.
Now notice that if � 2 int(⇤

↵,j

), then x
�

, V
i

+ �d
i

2 int(⇢
↵,j

) and in turn
Q(Kx�

ij
) > ↵ by virtue of assumption A6. The choice of ↵ therefore implies that

int(⇤
↵,j

) = ; for at least one index j 2 {1, . . . , p}. Without loss of generality, assume
that int(⇤

↵,1

) = ;. Since we also know that ⇤
↵,1

is a compact interval, we conclude
that ⇤

↵,1

is a singleton. The choice of ↵ implies that L = \p

j=1

⇤
↵,j

, which shows
that L ✓ ⇤

↵,1

. Since L 6= ; and ⇤
↵,1

is a singleton, we conclude that L(= ⇤
1,↵

) is a
singleton, i.e., � 7! q

i,i

(�, T ) has a unique maximizer.

It is an easy exercise to verify that the mean ratio metric (4) satisfies A1–A6.
In particular, S

ge

↵

is the region bounded by a circle (sphere) for d = 2 (d = 3) for
↵ > 0; see Figure 3. Conditions A1–A6 will have to be verified independently for
other metrics; cf. [34, 42].

4.4. Monotonic mesh qualities with suboptimal perturbations. Whether
unique or not, computing optimal perturbations requires finding roots of nonlinear
scalar equations. In the case of the mean ratio metric, we argued in section 3.2 that
these equations are polynomials and are hence easily resolvable. In general, however, it
may only be possible to compute these coordinates approximately, which are therefore
suboptimal. Alternatively, it may not be feasible to identify all the roots of the rele-
vant nonlinear equations, or suboptimal perturbations may be e�ciently computable,
for instance, by performing an incremental sweep using small coordinate increments
along the prescribed relaxation direction to sample the objective. Algorithm 3 below
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DIRECTIONAL VERTEX RELAXATION A2459

outlines a modification of Algorithm 1 using possibly suboptimal choices for vertex
perturbations while exploiting Lemma 4.5 to guarantee that the sequence of resulting
mesh qualities are nondecreasing.

1 Algorithm 3: Suboptimal directional vertex relaxation
Input:
T = (V, I,C) : Input triangulation
I
R

: Ordered set of vertices to relax
{d

k,i

}
i2IR,k2N : Relaxation directions

N

R

: Number of relaxation iterations

2 for iter = 1 to NR do
3 for i = 1 to m do
4 if found � 2 R such that q

i,i

(�, T ) > q

i,i

(0, T ) then
5 Update: V

i

 V
i

+ �d
k,i

6 end
7 end
8 end
9 return (V, I,C)

Theorem 4.10 (mesh qualities with suboptimal dvr). Given T , let T
k,i

denote

the triangulation computed upon updating the position of vertex i 2 I
R

during the kth

iteration of Algorithm 3, and set T
k+1,0

= T
k,m

. Then

Q(T )  Q(T
1,1

) · · ·  Q(T
1,m

)  · · ·Q(T
k,1

) · · ·  Q(T
k,m

) · · · .(30)

Consequently, the sequence

Q
1

(T ),Q
1

(T
1,1

), . . . ,Q
1

(T
1,m

), . . . ,Q
1

(T
k,1

), . . . ,Q
1

(T
k,m

), . . .

is nondecreasing and hence convergent.

The assumptions on the quality metric and the requirement Q
1

(T ) > 0 in Theo-
rem 4.2 are conspicuously absent in Theorem 4.10. This relief, however, comes at the
expense of property (9) and, more crucially, an indeterminate search for a perturba-
tion for each vertex update (step 4 of Algorithm 3). We expect that strategies for such
a search will inevitably entail some restrictions on Q and on the input mesh. Owing
to the algebraic simplifications possible using the mean ratio metric, in all our numer-
ical experiments, we compute “correct” vertex perturbations as roots of polynomials
using the GSL library [26] with algorithmic tolerances set to default values.

4.5. Termination criteria. The monotonicity of quality vectors computed by
Algorithms 1 and 3, and expressed in (10) and (30), respectively, help in identifying
a termination criterion for relaxation iterations. In particular, Theorems 4.2 and 4.10
guarantee that the first component Q

1

of the mesh quality converges as N

R

! 1.
Therefore, instead of relying on a fixed number of iterations, the algorithms can be
terminated once Q

1

(T
k,m

) � Q
1

(T
k,0

) < ", where " > 0 is a given tolerance. Such a
criterion is meaningful when improving meshes for use in finite element computations.

Admittedly, termination criteria based on a fixed number of iterations or on
convergence of the component Q

1

are both heuristic. Neither guarantee convergence
of meshes or of mesh qualities. We caution that despite the monotonic nature of mesh
qualities, we cannot infer their convergence (owing to the definition of the ordering
(2)). Nevertheless, it may be possible to identify convergent subsequences instead.
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5. Demonstrative applications of dvr. Next, we compile a list of examples
using dvr to improve triangle/tetrahedral meshes followed by a set of representative
applications where dvr will be useful. The intent behind the examples in section 5.1
is quite di↵erent from that behind the applications presented subsequently. In the
former, we are interested mainly in examining the magnitude of mesh improvement
possible with dvr. To this end, we pick meshes from open-source repositories and
meshes generated using open-source mesh generators, and provide these as inputs to
the dvr algorithm. Similar (and often the same) meshes have been used for testing
other mesh improvement algorithms in the literature [22, 32], which will be helpful for
readers interested in comparing the performance of dvr with some of these alternative
algorithms.

The applications discussed in sections 5.2–5.4 serve to exemplify the role of dvr in
simulating moving boundary problems. In the interest of keeping the discussions brief
and self-contained, we retain just the quintessential details concerning the evolution of
the boundary and intentionally omit pondering over how these evolutions are actually
computed in practice. The meshes used in these examples are quite simple—they have
a relatively small number of vertices/elements and have not been refined based on any
specific criterion. Our singular goal in these examples is to demonstrate that dvr is
useful in maintaining good element qualities by optimizing deformed meshes realized
during the course of simulating moving boundary problems. An application of dvr to
perturb nonconforming meshes to conform to cracks propagating in a linearly elastic
brittle solid can be found in [46].

5.1. Mesh improvement with dvr. Figures 8 and 9 show a collection of ex-
amples using dvr to improve the qualities of triangle and tetrahedral meshes. In all
these examples, vertices lying on the boundary are left undisturbed while the remain-
ing set of interior vertices enumerated in ascending order of the indices assigned by
the mesh generator constitutes the list I

R

. The relaxation direction for each vertex
in each dvr iteration (i.e., d

k,i

for i 2 I
R

, k 2 N) is generated at random. Alongside
the images of the meshes themselves, the figures show plots of the quality vectors of
the input meshes and the final optimized meshes computed after a fixed number of
iterations. A visual inspection revealed that the components of the quality vectors
converged within a couple of dozen iterations in all the examples. For definiteness, we
have used 25 iterations for the triangles meshes shown in Figures 8a and 8b and 40 it-
erations for all the remaining tetrahedral meshes. The termination criteria mentioned
in section 4.5 could have been used as well. While examining plots of the quality
vectors, note the logarithmic scale used for the horizontal axes. This has been done
to help visualize the improvement in the first few components of the quality vector,
which are certainly more significant than the later ones. In each plot, we note the
first component of the quality vectors (the poorest element quality) for the input and
optimized meshes, denoted by Qin

1

and Qopt

1

, respectively.
Since the examples are mostly self-explanatory, we mention just a few noteworthy

details. We observe that the poorest element quality is consistently improved in all the
examples and typically by a factor of at least two. The obvious question is then about
what limits improving these qualities any further. A few di↵erent factors are apparent
from our numerical experiments. Vertices in I

R

having a large number of elements in
their 1-rings (i.e., a high valence) are severely restricted in their motion irrespective
of the choice of relaxation directions. In some of the tetrahedral meshes shown, the
valence even exceeds 70. It is di�cult to envision improving element qualities around
such vertices without altering the mesh connectivity in some way—using face/edge
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(a) Input mesh: “superior” from [53]
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(b) Input mesh from [43]
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(c) Input mesh: “P” from [52]
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(d) Input mesh: “tfire” from [52]
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(e) Input mesh: “tire” from [52]

Q
ua

lit
y

dvr

input

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10
Index

102 103 104

#I
R

= 6849

N
elm

= 50391 Qin

1

= 0.207

Qopt

1

= 0.418

(f) Input mesh: “sculpt10kv” from [52]

Fig. 8. Examples demonstrating the mesh improvement possible with dvr in triangle and tetra-
hedral meshes. In each example, we have noted the poorest element qualities in the input and
optimized meshes, the number of elements in the mesh, the number of vertices relaxed, and the
source of the input mesh. Notice the logarithmic scale used for the horizontal axes in the plots of
the quality vectors. This has been done to facilitate a closer inspection of the elements with poor
qualities in the meshes. The optimized qualities correspond to meshes computed at the end of 25
and 40 iterations for the triangle and tetrahedral meshes, respectively.

collapse or vertex insertion/deletion operations, for instance. Similarly, vertices in I
R

whose 1-rings contain a significant number of elements having edges/faces lying on
the boundary are also severely restricted during relaxation iterations. Furthermore, a
poorly shaped triangle on the boundary clearly limits the quality of the tetrahedron
to which it belongs. Quite often, we find that the poorest element quality in the
optimized mesh is in fact realized over elements having an edge or a face lying on
the boundary. These observations reinforce the need for relaxing vertices lying on the
boundary of the mesh as well. Finally, we mention that the examples in Figures 8 and
9 provide useful evidence that the paradigm of relaxing vertices one by one adopted in
dvr, though inherently limited in scope when compared to relaxing multiple vertices
simultaneously, is nevertheless able to e↵ect considerable mesh improvement.

Next, we inspect the execution times recorded while optimizing the tetrahedral
meshes in Figures 8 and 9. Computed as an average over 40 iterations, the run times
per dvr iteration are plotted in Figure 10. Each data point in the plot corresponds
to one of the tetrahedral meshes. We have used the algorithm described in [45],
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(a) Input mesh generated using Tetgen [55]
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(b) Input mesh generated using Tetgen [55]
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(c) Input mesh generated using Tetgen [55]
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(d) Input mesh: “aorta” from [57]
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(e) Input mesh: “3D cow” from [57]
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(f) Input mesh: “Hand man” from [57]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10
Index

102 103 104

dvr
input

Q
ua

lit
y

#I
R

= 27821
N

elm

= 233408 Qin

1

= 0.124

Qopt

1

= 0.24

(g) Input mesh generated using Tetgen [55]
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(h) Input mesh generated using Tetgen [55]
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(i) Input mesh generated using Tetgen [55]
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(j) Input mesh: “Skull” from [57]

Fig. 9. More examples illustrating the improvement in tetrahedral mesh qualities possible with dvr.D
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Fig. 10. Execution time per dvr iteration for optimizing the tetrahedral meshes shown in Figures
8 and 9 while using the algorithm described in [45] to compute optimal perturbations (instead of
Algorithm 2). The times reported are computed as an average over 40 iterations. Our serialized
implementation of the dvr algorithm was run on a Mac Pro with a 3.5GHz Intel Xeon E5 processor
and using the gcc compiler (version 5.4.0, -O2 optimization flag). Notice the linear scaling of the
execution time with the number of vertices being relaxed.

henceforth referred to as Algorithm 20, in place of Algorithm 2, to compute vertex
updates while recording these run times. Similar to Algorithm 2, Algorithm 20 also
computes optimal vertex perturbations correctly, at least up to the tolerances set
(by default) while resolving polynomials in the GNU Scientific Library [26]. Both
Algorithms 2 and 20 compute identical meshes; the latter simply avoids many of the
extraneous computations inherent in the former by exploiting properties of the quality
metric discussed in section 4. The main point to be noted from Figure 10 is the linear
scaling between the execution time and the number of vertices being relaxed. The
plot reflects that in our serialized implementation, each vertex update in a tetrahedral
mesh requires about 63.2 microseconds on average; see the caption of the figure for
more details. Algorithm 2 also yields a linear scaling for the run time with the number
of relaxed vertices but with the caveat that the time taken per vertex update when
using it is much larger when compared to Algorithm 20. We refer the reader to [45]
for a detailed comparison of the two algorithms. Since the flop count and hence the
time required to compute a vertex update are necessarily data-dependent with both
Algorithms 2 and 20, the times reported in Figure 10 should be understood as being
representative averages only.

We conclude our discussion by briefly examining the influence of the vertex or-
dering chosen for I

R

on the final mesh qualities. In Figure 11, we revisit the examples
shown in Figures 8a and 9f and inspect the range of mesh qualities observed in 100
di↵erent trials, with the vertices in I

R

randomly shu✏ed at the beginning of each trial.
All other details of the mesh optimization procedure remain the same as before. Both
results in Figure 11 suggest that the e↵ect of vertex ordering in I

R

on the mesh qual-
ity is small. Nevertheless, it is possible that the influence may be more significant in
other examples, as well as during early iterations. Without quantitative estimates for
the mesh quality, we are unable to draw general conclusions at this time. A couple of
remarks are, however, worth mentioning. First, as an algorithm that relaxes vertices
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Fig. 11. Inspecting the influence of vertex ordering in I
R

on the final mesh quality. Figures (a)
and (b) show the range of mesh qualities observed when using 100 di↵erent (random) orderings for
vertices in I

R

for the meshes previously shown in Figures 8a and 9f, respectively. The mesh qualities
from the previous figures are shown by solid black lines, while the region enveloping the range of
mesh qualities observed with di↵erent vertex orderings is shaded in gray. In both experiments, the
influence of vertex ordering appears to be inconsequential.

one by one, consideration of vertex orderings in dvr is only to be expected. In con-
trast, this is not the case in algorithms that permit relaxing multiple (or all) vertices
simultaneously. Second, enforcing a prescribed vertex ordering in dvr is not natural
in parallel implementations of the algorithm, since vertex updates across multiple
processors cannot be synchronized without compromising e�ciency.

5.2. Application: Accommodating mesh motion. This example is aimed
at demonstrating how dvr can be useful in numerical simulations involving reasonably
large mesh motion, such as in ALE methods. Figure 12a shows a mesh over a hexag-
onal domain that for the sake of discussion we may think of as the result of advecting
vertices according to the fluid velocity in a flow simulation. We seek to improve it
using dvr, say to simulate the flow at subsequent times.

Choosing a Cartesian coordinate system (x, y) with the origin at the center of
the mesh, Figures 12b–12e show the results from two experiments: (i) when vertices
are relaxed along horizontal and vertical directions during even and odd iterations,
respectively, and (ii) when vertices are relaxed along the circumferential direction,
i.e., a vertex at position (x, y) during a dvr iteration is relaxed along the direction
(�y, x)/

p
x

2 + y

2. Vertices along the boundary and at the center of the mesh are
held fixed, while all the remaining ones are relaxed. The ordering of relaxed vertices
is chosen arbitrarily at the start of the algorithm and is identical in both experiments.

The results shown in Figure 12 help highlight two points. First, the connectivity
of the input mesh T implies that the best possible mesh in Pert(T ) is the mesh of all
equilateral triangles having quality Q = (1, . . . , 1). However, we do not know a priori
which among the candidate solutions in Pert(T ) is computed by the dvr algorithm or
the magnitude of improvement in mesh quality that is possible. These will depend on,
for instance, the initial positions of vertices in T , the choice of relaxation directions,
and the ordering of vertices in I

R

. We find that the meshes computed by dvr indeed
approach the best solution. The improvement compared to the given distorted mesh
is especially noteworthy. That arbitrary choices for the ordering and relaxation di-
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(a) unrelaxed mesh (b) 150 iterations, horizon-
tal/vertical relaxation directions

(c) 15 iterations, circumferential
relaxation directions
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Fig. 12. Improvement of the mesh in (a) using dvr. Figures (d) and (e) show the mesh qualities
resulting from relaxing vertices along the directions indicated in the plots. Observe the improvement
in mesh qualities in both cases, as well as the di↵erence in the number of iterations required to
achieve comparable qualities.

rections yield meshes approaching the best possible solution is encouraging evidence
of the performance of dvr.

Second, comparing Figures 12d and 12e underscores the fact that good choices
for relaxation directions can drastically reduce the number of iterations required to
achieve a desired mesh quality. While alternating relaxations along horizontal/vertical
directions is an “uninformed” choice, using circumferential relaxation directions is mo-
tivated by the specific deformations imposed on an equilateral mesh used to construct
the input distorted mesh in the first place.

5.3. Application: Accommodating boundary motion. In numerical meth-
ods for moving boundary problems, we frequently encounter the need to perturb
vertices in a mesh to accommodate the prescribed motion of nodes that are advected
to follow evolving boundaries/discontinuities such as material interfaces, shocks, or
cracks. Figure 13 shows a simple example using dvr to accommodate such boundary
motion.

The mesh in Figure 13a is obtained by rotating the boundary of a mesh of equi-
lateral triangles by 18�. We use dvr to improve the quality of the resulting deformed
mesh. In practice, only vertices in the vicinity of the perturbed boundary will need to
be relaxed. Since boundary displacements are comparable to the size of the domain in
this example, we relax all interior vertices while holding the ones along the boundary
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(a) unrelaxed mesh (b) 50 iterations, horiz./vert. re-
laxation directions

(c) 10 iterations, circumferential
relaxation directions
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Fig. 13. Optimizing a mesh using dvr to accommodate boundary motion.

and at the center of the mesh fixed.
We repeat the two experiments performed in the previous example by relaxing

vertices alternately along horizontal and vertical directions, and by relaxing vertices
along circumferential directions. Our observations from section 5.2 are confirmed here
as well. Figures 13d and 13e show that the qualities of the computed meshes approach
that of the best solution (a mesh of equilateral triangles) and that a good choice for
relaxation directions can substantially reduce the number of iterations required to
achieve close to best mesh quality. An additional detail to be noted here is that a
few elements in the initial mesh T are inverted, i.e., Q

1

(T ) < 0, which violates the
assumption made in Theorem 4.2. This example serves to highlight the fact that the
assumption Q

1

(T ) > 0 is only a su�cient condition for the conclusions derived there,
not a necessary one.

5.4. Application: Meshing evolving domains. This final example concerns
the application of dvr in an algorithm introduced in [47] for meshing evolving domains
using only a nonconforming background mesh. Figure 14a shows the evolution of a
hand-shaped domain whose boundary follows a mean curvature flow [14]. The exact
details of the evolution are not important for the current discussion; it su�ces to note
that the boundary is described as a cubic spline and remains C

2-regular for the time
duration considered. The meshing algorithm discussed in [47] recovers a mesh that
conforms to the evolving geometry at each time instant by perturbing a few vertices
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Fig. 14. The evolution of a hand-shaped domain whose boundary follows a mean-curvature flow
is shown in (a). At each instant, projecting a few vertices in a fixed background mesh of equilateral
triangles onto the immersed boundary and relaxing a few others using dvr helps recover meshes
that conform to the domain, as shown in (b). The meshes computed in this way at a couple of
di↵erent time instants are shown in Figure 15. The plots in (c) reveal that despite the large domain
deformations, the computed meshes T (⌦h(t)) at 80 di↵erent time instants all have good qualities.

in a fixed background mesh.
For this example, we choose a refined background mesh of all equilateral triangles

(not shown). At each time instant, the meshing algorithm identifies elements in the
same background mesh having at least one vertex inside the domain; see Figure
14b. Vertices on the boundary of this collection of triangles are projected onto their
respective closest points on the immersed domain boundary. To accommodate the
resulting deformations of triangles of the background mesh, it is necessary to relax a
few of the remaining vertices away from the boundary—we adopt dvr for this purpose.
In e↵ect, therefore, dvr helps in extending the closest point projection map of the
immersed boundary to the interior of the domain being meshed at each time instant.
Meshes computed in this way at a couple of di↵erent time instants are shown in Figure
15. We refer the reader to [47] for further details on the meshing algorithm itself.

Figure 14c shows details of the qualities of optimized meshes computed at 80
di↵erent time instants. That meshes with good qualities are computed for a domain
undergoing significant shape changes while using only a fixed background mesh and
without resorting to cumbersome cutting/trimming/remeshing operations is notewor-
thy.

D
ow

nl
oa

de
d 

11
/0

8/
17

 to
 1

4.
13

9.
12

8.
16

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2468 R. RANGARAJAN AND A. LEW

0 12
Fig. 15. Meshes computed at particular time instants for the evolving domain shown in Figure

14a by perturbing a few vertices in a nonconforming background mesh [47].

6. Outlook. We have introduced a simple yet robust algorithm called direc-
tional vertex relaxation for optimization-based mesh improvement. The guarantees of
nondecreasing mesh qualities and the conspicuous absence of any heuristics in the al-
gorithm distinguish it from alternative geometric mesh relaxation strategies proposed
in the literature. Numerical experiments reveal good performance of the algorithm
in varied representative applications and highlight it as a potent tool in simulation
methods for moving boundary problems.

For dvr to be adopted in large scale codes and in challenging numerical simu-
lations, important questions remain. First, it is not evident from the algorithm or
from the analysis presented whether the sequence (or a subsequence) of mesh iterates
computed by dvr converges to a limiting mesh. An a�rmative answer to this question
will help find robust termination criteria for the algorithm. It will also reveal the
mesh optimization problem approximated by the dvr algorithm. Second, it is impor-
tant to scrutinize the performance of dvr with a variety of mesh types and element
quality metrics. The analysis of the dvr algorithm presented here applies verbatim to
improving meshes with quads, hexes, and mixed element types as well. A systematic
study identifying quality metrics satisfying the assumptions we have established here,
accompanied by detailed numerical experiments examining the magnitude of improve-
ment possible with quad/hex meshes, is still essential. Finally, it will be crucial to
generalize/adapt the dvr algorithm to accommodate constraints requiring vertices to
remain on specified curves/surfaces. Then dvr can be used to improve meshes with
embedded cracks and interfaces, as well as to improve surface meshes.
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