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Abstract
We identify a novel parameterization for the group of finite rotations (SO3), consisting of an atlas of exponential maps defined
over local tangent planes, for the purpose of computing isometric transformations in registration problems that arise in machine
vision applications. Together with a simple representation for translations, the resulting system of coordinates for rigid body
motions is proper, free from singularities, is unrestricted in the magnitude of motions that can be represented and poses no
difficulties in computer implementations despite their multi-chart nature. Crucially, such a parameterization helps to admit
varied types of data sets, to adopt data-dependent error functionals for registration, seamlessly bridges correspondence and
pose calculations, and inspires systematic variational procedures for computing optimal solutions. As a representative problem,
we consider that of registering point clouds onto implicit surfaces without introducing any discretization of the latter. We derive
coordinate-free stationarity conditions, compute consistent linearizations, provide algorithms to compute optimal solutions and
examine their performance with detailed examples. The algorithm generalizes naturally to registering curves and surfaces onto
implicit manifolds, is directly adaptable to handle the familiar problem of pairwise registration of point clouds and allows for
incorporating scale factors during registration.
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1. Introduction

The registration problem in machine vision consists of placing data
sets in a common frame of reference by estimating the transfor-
mations between them. It arises in varied contexts, including pho-
togrammetry, robotics, motion sensing and object detection. It is
perhaps most commonly encountered as the ‘scan matching’ prob-
lem, wherein clouds of point samples from a surface are obtained
from multiple views, each in its own system of coordinates. This is a
recurring issue in surface scanners since multiple partial reconstruc-
tions are required to compensate for the limited field of view. The
scan matching problem also manifests when merging point clouds
determined using different scanning modalities. In general though,
data sets to be registered need not consist of just point clouds; they
may also include curves, surfaces and depth maps. During com-
ponent inspection, for example, the computed aided design (CAD)
geometry and the measured data (points, curves and surfaces) need
to be mapped to a common coordinate system for comparison and

to detect manufacturing errors. Just as with data sets, the class
of transformations permitted during registration can be varied as
well. Throughout this paper, we will be exclusively concerned with
transformations that are isometries, i.e. motions comprised of a
rigid body rotation, a translation and possibly an isotropic scale
factor.

Key ideas. A principal unknown in the rigid registration problem
is a rotation matrix. The challenge in computing it is made ap-
parent by the observation that the set of rotations (SO3) lacks a
linear structure due to the constraints imposed by orthogonality.
Noting that SO3 is a three-dimensional manifold, the lack of lin-
earity is not a hindrance since computations can be pulled back to
a parametric domain instead. Rather, the challenge lies in choos-
ing a proper system of coordinates [Stu64, SA91, ELF97]. This
question of how to parameterize rotations in registration problems
is indeed one of our main concerns here. Our task is confounded
by the fact that it is impossible to identify a singularity-free three
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degree of freedom(dof) parameterization for SO3 . The singularities
encountered at the poles when representing rotations using Euler
angles demonstrate precisely this fact. If an improper set of coordi-
nates can be admitted, the task is drastically simplified. For instance,
4-parameter quaternions furnish a robust parameterization, facilitate
simple rules for composing rotations and enable compact storage
for rotation fields in computer implementations [FH86, Hor87]. Al-
ternately, viewing SO3 as a constrained subset of the vector space
of affine transformations, we can simply pick the nine components
of a rotation matrix (say in a Cartesian basis) as its degrees of free-
dom and augment these with Lagrange multipliers to enforce the
orthogonality conditions. This was in fact the approach followed in
[Kab76] to lay the foundations for the iterative closest point (ICP)
algorithm. Unlike the parameterizations mentioned above, expo-
nential coordinates represent a canonical choice for SO3. The idea
behind their definition lies in locally parameterizing the manifold
over tangent planes using the exponential map (Exp). Recall that
the tangent plane to SO3 at an arbitrary rotation is isomorphic to
the set of skew-symmetric matrices, and hence to R3 itself. Geo-
metrically speaking, the three dofs of a local exponential coordinate
system over SO3 are the Cartesian coordinates of an axial vector
defining an infinitesimal rotation at a given point on the manifold.
Then, the exponential map naturally defines an association from
the tangent plane to the manifold, which in this case, is from the
Lie algebra so3 to the Lie group SO3 [GX03, Gal11]. Unlike with
general manifolds, we are also afforded the convenience of being
able to easily compute this exponential map. At the identity rotation,
for example, Exp is simply the matrix exponential defined over the
set of skew matrices and is given by what is commonly referred
to as the Rodriguez formula [Gra98, Ead17]. It is, however, im-
portant to recognize that the chart Exp : so3 → SO3 is only local,
since the restriction of Exp to so3 fails to be injective when the
magnitude of incremental rotations exceeds 180◦. For this reason
perhaps, exponential coordinates are often discarded in machine vi-
sion and robotics applications in favour of parameterizations using
Euler angles and quaternions [SA91].

It may appear that the restricted domain for the chart defined
by Exp effectively limits rotation angles to 180◦. This limitation
is only illusory and can be overcome by explicitly constructing an
atlas for SO3 using local charts induced at each rotation. In contrast,
such atlas constructions appear to be impractical with other 3-dof
parameterizations for SO3. Specifically in the context of resolving
registration problems, injectivity of the local exponential map only
stipulates that rotation increments be smaller than 180◦ at each so-
lution iteration. Crucially, there is no restriction on the cumulative
rotation computed over multiple iterations — rotations exceeding
180◦ can certainly be computed, but just not over a single itera-
tion/increment. For these reasons, local exponential coordinates are
an ideal choice for resolving registration problems. In the exposition
that follows, we find that the choice of these coordinates proffers
benefits beyond just parameterizing rigid body transformations —
they help to derive coordinate-free stationarity conditions satisfied
by the solution using variational procedures and afford convenient
algorithms for numerically approximating these stationary points.

Related literature. The point of departure when discussing meth-
ods for resolving registration problems is of course the ICP algo-
rithm. Although numerous alternatives have been proposed, ICP

is the method of choice for registering pairs of point cloud data
sets [BSB*15]. As its name suggests, the algorithm is iterative and
consists of computing point correspondences between data sets, fol-
lowed by a pose estimation step. At each iteration, closest pairs of
points in the two data sets are deemed to correspond, based on either
point-to-point or point-to-plane distance metrics [CM92]. With the
error functional defined as the sum of squared distances between
corresponding pairs of points in centroid-aligned clouds, the opti-
mal rotation is computed using the singular value decomposition
of the cross-correlation matrix [AHB87, Ume91, BM*92, Kan94].
Perhaps the most appealing feature of ICP is the fact that the optimal
pose at each iteration is explicitly computable. This aspect of the
algorithm is routinely exploited in applications demanding fast and
efficient registrations [RL01].

Shortcomings of the ICP algorithm are well documented in the
literature. As a first among these, we mention one that also happens
to be a defining feature of the algorithm — the two-step paradigm in
the algorithm explicitly precludes the possibility of simultaneously
altering correspondences and pose. This deficiency is also common
to its numerous variants [RL01, SHT09], and is responsible for these
algorithms occasionally identifying incorrect solutions (suboptimal
local minimizers). The algorithms we propose in Sections 3 and 4 for
registration onto implicit surfaces directly address this shortcoming
by seamlessly bridging correspondence and pose calculations. Di-
rect optimization-based approaches are also a promising alternative
to ICP-based algorithms in this regard [Fit03, MGPG04].

Recent work on registration algorithms overwhelmingly falls in
the category of probabilistic methods, which help to address uncer-
tainties in the registration process not considered in ICP — both in
measurements (e.g. noise) as well as in the computed transforma-
tion parameters and correspondences. A common theme underlying
many such methods consists of replacing point clouds by Gaussian
mixture models (GMMs) and computing transformations that fit
GMM centroids to the target data set by maximizing the likelihood
[JV05]. Notably, the binary assignment of correspondences in ICP-
type algorithms is replaced by the idea of assigning correspondences
with probability density functions. Various refinements of this idea
meant towards improving robustness of the registration procedure
have been proposed. The coherent point drift algorithm constrains
GMM centroids to transform as a group in order to preserve the
topological structure of point sets [MS10]. Permitting the variances
of GMMs to be an additional parameter during registration leads to
a multiscale scheme [GP02], since variances can be interpreted as
scale/blurring factors. The kernel correlation algorithm constructs
probability distributions for each data set and measures the dissimi-
larity between them to achieve registration [TK04]. The assumption
of isotropic covariances is relaxed in [HFY*11] by permitting the
use of general covariance matrices for mixture model components.
Robust point matching algorithms [CRZL04] consider all possible
correspondences and iterate towards uniquating matches, and can
therefore succeed in registering data sets for which ICP fails. The
covariance-driven correspondence algorithm of [SYS07] estimates
the uncertainty in point correspondences to improve the robustness
of the registration. We mention that many of the ideas mentioned
above are also applicable in the general context of non-rigid registra-
tion, where a suitable model for the type of admissible deformations
is additionally required [CR03, MZJZ17, TCL*13, MZY16].
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Figure 1: We propose novel registration algorithms that adopt a variational approach and local exponential map-based coordinates to
achieve a unified framework for registration of point clouds, (triangulated) surfaces and curves onto implicitly defined manifolds.

The fuzzy nature of correspondences inherent in the probabilistic
methods mentioned above is also common to soft assignment meth-
ods, which construct a correspondence matrix while imposing row
and column constraints [RCB97, CR03, Liu07, KSS*17]. Incorpo-
rating structural information is generally recognized to help improve
the robustness and accuracy of registration. The notion of a shape
context proposed in [BMP02, MQZ*15], while directly relevant
for registration, is more generally useful in applications involving
shape recognition. In [MQZ*15], local structures in point clouds
are exploited to improve probabilities assigned in mixture models.
A point-matching algorithm based on preserving local neighbour-
hood structures with a graph-theoretic interpretation can be found in
[ZD06]. The recent work in [MZJZ17] illustrates the possibility of
using intrinsic geometric information in mixture models to achieve
robust non-rigid registration despite the presence of outliers.

Integral to the success of most registration algorithms, including
ones proposed here and those mentioned above, is the requirement
that data sets being registered be sufficiently close (in an appropri-
ate distance metric). Hence, coarse registration based on landmarks,
feature points or background markers is generally a prerequisite for
successful fine registration procedures. In this context, schemes de-
signed to sample the solution space play a crucial role in automat-
ing coarse registration. For instance, the idea of extended Gaussian
images in [MPD06] and the branch-and-bound search scheme in
[YLJ13] search the space of isometric transformations and therefore
help to identify globally optimal solutions despite large discrepan-
cies in initial alignment. Accounting for partial overlaps and outliers
is also crucial during registration. Rather than relying on tolerance-
sensitive and heuristic criteria for rejecting point-pairings, methods
that sample numerous possible correspondences help to identify
outliers and partial overlaps more robustly [TFR99, CSK05].

Perhaps the closest approach to ours, which exploits the structure
of the constraint manifold of rigid body motions for registration,
is the work in [KLMV05]. Therein, the problem of simultaneously
registering multiple point clouds with known correspondences is
considered (cf. [WB01]), and a construction of local charts using
exponential coordinates for SO3 plays a key role. The algorithm
proposed there consists of first lifting the registration problem to
the affine tangent space at the current configuration (a set of poses),
identifying a solution iterate in the tangent space and subsequently
projecting back to the constraint manifold with the local exponen-
tial map. In contrast, we resolve the registration problem directly
on the constraint manifold by explicitly constructing paths on it
and hence bypass the lift-optimize-project paradigm, while con-
spicuously avoiding any exiguous algebraic additions/subtractions
of rotations. Besides, the variational approach proposed and consis-
tent linearizations derived here yield unambiguously more general

algorithms, as evidenced by the algorithms for registering varied
data sets (point clouds, curves and surface) to implicit surfaces
without assuming any correspondences a priori, see Figure 1.

A loose analogy between rigid body motions and the registra-
tion problem appears in the work in [PLH04], where the notion
of ‘instantaneous kinematics’ is introduced to compute incremen-
tal helical motions to achieve registration. The explicit requirement
of the squared distance to the target surface, the ensuing quadratic
approximation of squared distances and the linearized kinematics
yielding helical motions are all key aspects of the algorithm in
[PLH04] which are completely irrelevant in our approach. In fact,
none of the linearizations appearing in [PLH04] are employed here.
Instead, we directly pose the registration problem on the manifold
of isometric transformations.

The group theoretic and differential geometric ideas underly-
ing our work here are also generally well adopted in computer
graphics applications related to constructing paths interpolating
rigid body transformations [Ale02]. Indeed, numerous algorithms
for constructing interpolants in Lie groups have been proposed,
with applications ranging from synthesizing animations in computer
graphics or path planning in robotics [ŽK98, Agr06], to designing
integrators for ordinary differential equations [Mar99]. A recent ap-
plication exploiting the recognition of rigid body motions as a Lie
group to detect symmetries in data sets can be found in [SAD*16].
As a particular example of the potency of adopting canonical coor-
dinates for problems posed in Lie groups, we highlight an analysis
of the motion and structure recovery problem arising in computer
vision [MKS01], where the parameterization of the essential mani-
fold (closely related to SO3) plays a key role. The multi-chart atlas
for SO3 adopted here shares many features with methods used for
describing motions in rigid body mechanics [SW91] and for de-
scribing the kinematics of director fields in rod and shell theories
[SVQ88, SF89].

Besides the choice of coordinates, an important ingredient in our
work are algorithms for optimization problems posed on manifolds
[AMS10]. Steepest descent and Newton-type algorithms are particu-
larly relevant to the registration problem we study, as are algorithms
designed for Stiefel manifolds [EAS98] since the orthogonal group
can be interpreted as a special case of it.

Contributions. We concisely list our key contributions in this pa-
per.

(i) We formulate the problem of pairwise rigid registration
of data sets as an optimization problem posed over the
constrained manifold of rigid body motions.
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(ii) We adopt a proper system (6-dof) of local exponential coor-
dinates for parameterizing the space of admissible solutions.
Such a parameterization for isometries is independent of the
representation chosen for data sets themselves, which en-
ables us to register varied data sets (point clouds, curves and
surfaces as depicted in Figure 1), facilitates flexible choices
for the error metric being minimized and helps to naturally
incorporate higher order information in the target data set
(e.g. normals and curvatures). It is also straightforward to
include scaling factors during registration by introducing
an additional dof.

(iii) We exploit variational principles to derive concise stationar-
ity conditions satisfied by the solution and detail consistent
linearization procedures for iteratively computing optimiz-
ers using a general class of Newton-type nonlinear solvers.
In particular, we demonstrate that realizing the idea of us-
ing an exponential map-based multi-chart atlas for SO3 in
the proposed variational framework poses no algorithmic
or numerical difficulties.

(iv) Remarkably, in all the variants of registration problems
studied here, stationarity conditions satisfied by solutions
turn out to be coordinate-free expressions that completely
disguise the underlying parameterizations for isometries
chosen to derive them in the first place. These stationar-
ity conditions can serve as a starting point in alternative
registration algorithms using a completely different set of
coordinates if desired. Furthermore, the stationarity con-
ditions derived here do not seem to appear frequently in
the literature presumably because they are obscured by
the choice of coordinates and the presence of extraneous
coordinate-specific constraints.

(v) It is worth noting that none of the registration problems con-
sidered in Sections 3 and 4 can be resolved with ICP, at least
not without introducing some approximation/discretization
of the data sets being registered.

(vi) We include numerous examples demonstrating the robust-
ness of the algorithms proposed, provide detailed accounts
of their performance and compare it with state-of-the-art
algorithms for a representative set of examples.

Organization. We begin in Section 2 by providing a concise de-
scription of the exponential map-based atlas constructed over SO3.
Such a parameterization facilitates constructing 1-parameter fami-
lies of rotations, i.e. curves on the constraint manifold which help
to define variational procedures for resolving registration problems.
Through the problem of registering a point cloud onto an implicit
surface that is considered in detail in Section 3, we explain the
key ingredients in our approach — defining an objective functional,
deriving stationarity conditions satisfied by the optimal pose, com-
puting consistent linearization of these conditions and employing
them in a Newton algorithm to numerically approximate the solu-
tion. We provide numerous examples with the algorithm, examine
its performance in detail and compare it with alternative registration
algorithms. Generalizations of the algorithm to registering curves
and surfaces onto implicit manifolds and a novel procedure to in-
clude scale factors during registration are discussed and illustrated
with examples in Section 4. Section 5 is devoted to the case of
pairwise registration of point clouds. We provide two approaches to

this end. The first consists of approximating the target point cloud
with an implicit surface, while the second is an ICP-type algorithm.
Finally, we end with a few concluding remarks in Section 6.

2. A Parameterization for Finite Rotations

We begin by recalling a few geometric preliminaries that are directly
relevant for our purposes and in the process, introduce the notation
required in the remainder of this paper. The group of orthogonal
transformations, given by

SO3 �
{
R : R3 → R3 | Rt = R−1 and det R = +1

}
, (1)

is a set endowed with a manifold structure. Its tangent space at the
identity element (I) is the set of infinitesimal rotations

TISO3 �
{
W : R3 → R3 | Wt = −W

}
, (2)

also identified as the Lie algebra so3 corresponding to the Lie group
SO3. At an arbitrary element R ∈ SO3, the tangent space is simply
a rotated version of TISO3, i.e.

TRSO3 �
{
WR | RWRt ∈ TISO3

}
. (3)

Equation (3) is often referred to as the right translation of so3.

Recognizing the isomorphism between so3 and R3, we define the
hat operator ˆ : R3 → so3 as

� ∈ R3, �̂ v � � × v for each v ∈ R3, (4)

where × is the usual cross product. In Equation (4), we interpret �

to be the axial vector of the infinitesimal rotation �̂. Throughout
the remainder of this paper, we will use this identification between
� and �̂ without explicit mention, and for convenience, also set
θ � ‖�‖. Ignoring the distinction between vectors/transformations
and their corresponding matrix representations in a Cartesian basis,
Equation (4) can be expressed in component form as

� ∈ R3,� =
⎡⎣�1

�2

�3

⎤⎦ ⇒ �̂ �

⎡⎣ 0 −�3 �2

�3 0 −�1

−�2 �1 0

⎤⎦. (5)

The exponential of a skew matrix will be central to our presenta-
tion. Given �̂ ∈ so3, we have the Rodriguez formula

Exp[�̂] � I + sin θ

θ
�̂ + (1 − cos θ )

θ 2
� ⊗ �, (6)

where ⊗ denotes the dyadic product. Equation (6) is straightforward
to prove, for instance, by using a series expansion for the matrix
exponential and noting the relationships

�̂
2 = � ⊗ � − θ2I and �̂

3 = −θ2�̂

when computing higher powers of �̂, see [MLSS94]. While Equa-
tion (6) defines the exponential map for SO3 at the identity, the
mapping ExpR : TRSO3 → SO3 over the tangent space at an arbi-
trary R ∈ SO3 now follows as

ExpR[�̂] � Exp[�̂]R for each �̂ ∈ so3. (7)

Strictly speaking, the argument for ExpR[·] should be an element in
TRSO3; we nevertheless permit the abuse of notation in Equation (7)
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Figure 2: A conceptual illustration of the multi-chart parameteri-
zation for SO3 over local tangent planes with the exponential map.

owing to the simple relationship between so3 and TRSO3 evident
in Equation (3). It is straightforward to verify that the mapping in
Equation (7) is surjective and that it is injective only for θ smaller
than π . For this reason, ExpR only defines a local chart for SO3 at
R over TRSO3, see Figure 2. The local parameterization for SO3

induced by Equation (7) will be the foundation of our registration
algorithms.

With the local parameterization �̂ 	→ ExpR[�̂] at hand, we can
now define 1-parameter families of rotations for each R ∈ SO3 and
�̂ ∈ so3, as

R 
 ε 	→ Rε � ExpR[ε�̂]. (8)

Note that Rε satisfies

lim
ε→0

Rε = R and lim
ε→0

dRε

dε
= �̂R. (9)

In particular, Equation (9) shows that the curve ε 	→ Rε passes
through R at ε = 0 and its tangent there coincides with the infinites-
imal rotation �̂R ∈ TRSO3. We will see next that this observation
enables us to explore admissible configurations in the immediate
neighbourhood of R and hence to systematically construct varia-
tional procedures to solve registration problems.

3. Registering Point Clouds to Implicit Surfaces

As a first problem, we consider registering a point cloud U = {ui}ni=1

to an implicitly defined surface S. Such a scenario is commonly
encountered, for instance, when registering scanned point clouds
from manufactured products to their model CAD surfaces during
quality inspections. We will discuss this registration problem in
some detail since it serves as a prototype for further generalizations
examined in subsequent sections.

By saying that S is implicitly defined, we identify S as the zero-
level set of a twice continuously differentiable function ψ : R3 →
R, so that

S � {x ∈ R3 : ψ(x) = 0, ‖∇ψ‖ �= 0}. (10)

Registering U to S consists of finding (R, t) ∈ SO3 × R3 that maps
U onto S in some optimal sense. Here, we pose this question as a
minimization problem:

Find (R, t) � arg min(Q,s)∈SO3×R3 Jp(Q, s), (11)

where Jp : SO3 × R3 → R is the functional

Jp(Q, s) � 1

2

n∑
i=1

ψ2(Qui + s).

The choice of the error functional Jp is quite natural. It is motivated
by the fact that when U is perfectly registered, thenψ(Rui + t) = 0
for each i = 1, . . . , n and consequently, Jp = 0 as well.

3.1. Stationarity conditions

In general, it is not possible to compute closed form solutions for
(R, t) in Equation (11). Instead, our first objective is to deduce
conditions satisfied by a minimizer of Jp. For this purpose, we adopt
a variational approach and request stationarity of Jp with respect to
all admissible variations of the solution (R, t):

〈δJp(R, t), (�̂,w)〉 � lim
ε→0

d

dε
Jp(ExpR[ε�̂], t + εw)

= 0 ∀(�̂,w) ∈ so3 × R3. (12)

In stating Equation (12), we have exploited the fact that since
so3 
 �̂ 	→ ExpR[�̂] is local chart for SO3 at R, any admissible
configuration in the neighbourhood of R is necessarily of the form
ExpR[ε�̂] for some � ∈ so3 and some ε ∈ R that is presumed to
be small.

Since variations �̂ and w can be chosen independently of each
other, Equation (12) is equivalent to the pair of conditions

〈δJ(R, t), �̂〉 � lim
ε→0

d

dε
J(ExpR[ε�̂], t) = 0 ∀ �̂ ∈ so3, (13a)

〈δJ(R, t),w〉 � lim
ε→0

d

dε
J(R, t + εw) = 0 ∀w ∈ R3, (13b)

which result from setting w = 0 and �̂ = 0, respectively, in Equa-
tion (12). We understand Equations (13a) and (13b) as conditions
defining stationarity of the error functional with respect to incre-
mental rotations and incremental translations, respectively.

Following the calculations outlined in Proposition 1 that is stated
and proved in Appendix A, we find that Equation (13) simplifies to
the condition

r(R, t) �
[

rθ (R, t)
rt(R, t)

]
=

n∑
i=1

[
(Rui) × ψ∇ψ(Rui + t)

ψ∇ψ(Rui + t)

]
= 0.

(14)

A few remarks concerning Equation (14) are in order.

(i) Equation (14) is a set of six independent equations that
suffice to determine the stationary point (R, t), provided
that the data sets U and S satisfy certain non-degeneracy
conditions.

(ii) Equation (14) is coordinate-free — it completely conceals
the specific parameterization for SO3 × R3 used to derive
it.

(iii) In addition to the functional form of Equation (14), non-
linearity in the stationarity conditions also stems from the
underlying solution space SO3 × R3 being a manifold lack-
ing a vector space structure. As we discuss next, it is

c© 2018 The Authors
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necessary to resort to a Newton algorithm to resolve these
equations.

(iv) The form of the stationarity conditions in Equation (14)
will be common to registration problems considered in sub-
sequent sections as well, with differences only stemming
from the specific definitions for the objective functional.

(v) In deriving Equation (14) in Proposition 1, we do not impose
or compute any correspondences between the point cloud
U and the surface S.

(vi) It is in general not possible to condense out the translational
dofs from Equation (14). This is in contrast to the scenario
that arises in pairwise registration of point clouds, where
the translation has the simple interpretation of serving to
align the centroids of the two point clouds. In particular,
Equation (14) is a fully coupled system of nonlinear alge-
braic equations for (R, t).

3.2. Consistent linearization of stationarity conditions

While the set of six conditions in Equation (14) can be resolved
using any set of coordinates for R, we adopt exponential coordinates
for this purpose as well. This choice, together with the consistent
linearization of the residual computed next, will be the basis for
iterative nonlinear solvers to compute numerical approximations of
the solution.

We linearize the residual r(R, t) at the pose (R, t) along (�̂,w)
as

L(R,t)r(�̂,w) � r(R, t) + K(R, t)
[

�̂

w

]
, (15a)

where K(R, t)
[

�̂

w

]
� lim

ε→0

d

dε
r(Rε, t + εw). (15b)

We understand K(R, t) [�̂; w]t to be the directional derivative of r
at (R, t) along (�̂,w) ∈ so3 × R3. The notation in Equation (15),
which closely follows [MH94], ch. 4], emphasizes the fact that the
directional derivative K(R, t) [�̂; w]t depends linearly on �̂ and
w, and that (�̂,w) 	→ L(R,t)r(�̂,w) is an affine map over so3 ×
R3. Unlike the stationarity conditions, we find that the choice of
coordinates for SO3 clearly manifests in the linearizations of r.
Following Proposition 2 proved in Appendix A, we find that K(R, t)
in Equation (15) is given by

K(R, t) =
n∑
i=1

[
Kθθ
i Kθt

i

Ktθ
i Ktt

i

]
6×6

∣∣∣∣∣
Rui+t

, (16)

with: Ktt
i = ∇ψ ⊗ ∇ψ + ψ∇∇ψ,

Kθt
i = (̂Rui) Ktt

i

Ktθ
i = (

Kθt
i

)t
,

and Kθθ
i =

(
̂(ψ∇ψ) − (̂Rui)Ktt

i

)
(̂Rui).

The form of the residual r and the Jacobian K in Equations (14)
and (16) reveals that they can be conveniently assembled by sum-
ming contributions from each point in U, which can also be done in
parallel if desired.

Figure 3: An illustration depicting the evolution of solution iterates
in Algorithm 1. At the (k + 1)th iteration, the algorithm computes the
increment �k+1 belonging to the tangent plane at Rk . The solution
guess is then updated using the exponential map at Rk .

3.3. Iterative solution with a Newton algorithm

Let us suppose that we have an initial guess (R0, t0) for the solu-
tion of Equation (14). Following a Newton algorithm, we set the

linearized residual L(R0,t0)(�̂
1
,w1) to zero, which yields a linear

system of equations for the increment (�1,w1) ∈ R3 × R3. Specif-
ically from Equation (15), we get

K(R0, t0)︸ ︷︷ ︸
K0

[
�1

w1

]
= − r(R0, t0)︸ ︷︷ ︸

r0

, (17)

where the Jacobian K0 is a 6 × 6 matrix and the residual r0 is a
6 × 1 column vector. With the increment (�1,w1) computed from
Equation (17), we improve the guess for the solution as

R1 = ExpR0 [�̂
1
] = Exp[�̂

1
]R0 and t1 = t0 + w1.

Next, setting L(R1,t1)r(�̂
2
,w2) = 0 yields the increment (�2,w2),

and so on, see Figure 3. At the (k + 1)th iteration, we do:

Algorithm 1

(i) Assemble: Kk = K(Rk, tk) and rk = r(Rk, tk) using eqs.
(14) and (16).

(ii) Solve: compute the increments (�k+1,wk+1) satisfying

Kk

[
�k+1

wk+1

]
6×1

= −rk.

(iii) Update: the solution to

Rk+1 = ExpRk [�
k+1] and tk+1 = tk + wk+1.

The above linearize-solve-update recipe can be repeated indefi-
nitely, at least until a termination criterion is satisfied. In practice, we
terminate the algorithm when the norm of the residual falls below a
predefined tolerance.

3.4. A unified perspective on pose updates

The pose update

Rk+1 = ExpRk [�
k+1] and tk+1 = tk + wk+1 (18)

c© 2018 The Authors
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at a generic (k + 1)th iteration in Algorithm 1 with the computed
incremental rotation �k+1 and translation wk+1 provides a clear
juxtaposition of the parameterizations adopted for rotations and
translations. The vector space structure of R3 and the lack of such
linearity in SO3 is the main reason behind the different update
formulas for rotations and translations appearing in Equation (18).

A unified perspective, however, emerges from identifying the
space of admissible translations R3 endowed with the addition op-
eration (+) as a Lie group. In such a trivial case, the Lie algebra
coincides with the Lie group itself and the exponential map is sim-
ply the identity. Hence, for a given t ∈ R3, the exponential map
Expt : R3 → R3 for the additive group is given by

Expt[w] � t + w.

We can now view isometries as being locally parameterized over
the Lie algebra so3 × R3 of the tensor product Lie group SO3 × R3.
The exponential map at the element (R, t) is denoted by Exp(R,t) :
so3 × R3 → SO3 × R3 and is defined as

Exp(R,t)[�̂,w] = (ExpR[�̂],Expt[w]),

so that the update in Equation (18) is given by

(Rk+1, tk+1) = Exp(Rk ,tk )[�̂
k+1
,wk+1], (19)

revealing a uniform treatment of rotations and translations in the
algorithm. The unified perspective apparent from Equation (19)
fully justifies the title of this article as well. Indeed, we could have
adopted the perspective in Equation (19) throughout this section
without altering the stationarity conditions, their linearization or
Algorithm 1. We have avoided such an abstract presentation in
favour of simplicity.

3.5. Illustrative examples

We demonstrate the performance of Algorithm 1 with a few exam-
ples. In the first example depicted in Figure 4, the target surface S
is the zero-level set of the function

ψ(x, y, z) � y sin x − x cos y − 10z/3, (20)

and is shown in gray in the figure. The cloud U to be registered
consists of 104 points and is shown in red. It is defined by super-
imposing a randomly generated rigid body transformation on an
irregular sampling of S. We start Algorithm 1 with the trivial initial
guess (R0, t0) = (I, 0), where I is the identity matrix. The registered
data set is shown in green in the figure. In this example, we find
that with the tolerance for the norm of the residual set to 10−10,
the algorithm converges in seven iterations. Details of the iterations
are reported in Figure 4(b). Note that at the converged solution, the
functional Jp being minimized is practically reduced to zero. Since
Jp ≥ 0, we infer that the algorithm has indeed found the exact so-
lution. Furthermore, as generally expected in Newton iterations, we
find that once the residual is reduced to a small value, it converges
to zero very rapidly.

Using the surfaces defined by the level set functions listed in
Figure 5, Figure 6 shows more examples demonstrating the applica-
tion of Algorithm 1. As we did in Figure 4(a), the implicitly defined
surface is shown in gray in each case. The nomenclature chosen for
the surfaces is based on the terminology used in the literature on
algebraic surfaces [KI15], and in visualization and surface polygo-
nalization softwares [Con, Tea, Ren]. The unregistered point clouds
are shown in red, while their registered counterparts computed by
Algorithm 1 are shown in green in Figure 6. In each example, we
start the algorithm with the trivial initial guess (R0, t0) = (I, 0) for
the solution. The tables in the last row of the figure report additional
details on the the number of points registered, the reduction in the
value of the objective after registration, the number of iterations
required for convergence and the time taken for the computation.
We note that for the sake of better visualization, the images in the
figure show registration of sparser clouds, i.e. with fewer number of
points, while the table reports details of the calculation for register-
ing denser point clouds.

3.6. Implementation and performance

We provide code snippets closely resembling our C++ implemen-
tation of Algorithm 1 as Supplementary Information supporting this
article. It includes outlines of routines for assembling the matrix-
vector system to be resolved at each iteration, for calculating the

(a) (b)

Figure 4: An illustrative example demonstrating the application of Algorithm 1 to register a point cloud U (in red) onto the surface S that is
specified as the zero-level set of the function in Equation (20). The algorithm converges within seven iterations, whose details are provided in
the table on the right.

c© 2018 The Authors
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Figure 5: Level set functions defining the implicit surfaces appearing in the examples in Sections 3 and 4.

exponential map and for computing pose updates. We have omitted
details of the routines we use for solving the system of linear equa-
tions at each iteration. In our implementation, we use the GNU GSL
open source library [Gou09] to compute the LU-decomposition of
the matrix K, following which, computing the solution vector is
straightforward. Alternative linear solvers can be used without sig-
nificantly altering performance since the size of the system being
resolved is small (K is a 6 × 6 matrix).

All the examples shown and run times reported here correspond
to executing our serial implementation on a Mac Pro workstation
(3.5GHz, Intel Xeon E5 processor). We use the GNU g++ compiler
with the optimization flag set to ‘-O2’.

Referring to the tables in Figures 6(l) and (m), we first draw
attention to the size of the point cloud data sets registered across the
different examples. The number of points ranges from 104 for the
Monge surface, to about 8.2 × 105 in the case of the Blob surface.
While it is guaranteed that the solutions found in the examples
are stationary points of Jp since the residual is reduced to zero
(smaller than a tolerance), the fact that the objective functional is
reduced by factors exceeding 1010 in all the examples suggests that a
minimum has indeed been found by the algorithm. We consistently
find that the algorithm converges within a dozen iterations. The
only exception appears to be the example of the ‘Rings’ surface,
where 17 iterations were required. We suspect the reason behind
this to be the presence of intricate features in the surface (note the
complicated topology of the surface in Figure 6(i)), which in turn
causes its level set function to have steep gradients.Owing to the
complexity of the level set functions defining the surfaces in these
examples, we rely on a symbolic manipulator (Mathematica [Inc]) to
compute gradients and Hessians, and export the expressions found
directly to our routines. In particular, we did not make any attempt
to efficiently implement these expressions. We mention this point
because the execution time of the algorithm depends directly on
the implementation of the level set function ψ and its derivatives.
We highlight a few examples that substantiate this observation. In

the case of the Monge surface, where the level set function given
by Equation (20) and its derivatives assume very simple forms, the
execution time of 0.02 s to register 104 points is very fast. Similarly,
registering 4.5 × 105 points to the Goursat surface takes only 1.18 s.
In contrast, registering 3.5 × 105 points to the Squared-torus surface
takes 5.29 s while requiring a similar number of iterations. This is
a direct consequence of the inefficient evaluation of ∇ψ and ∇∇ψ
for the Squared-torus surface.

In the next set of performance tests, we register point clouds of
varying sizes to each of the 12 surfaces. Figure 7 reports our findings.
The plot on the left shows the execution time required per iteration
for the different examples. We find an approximately linear scaling
between the number of points registered (spanning at least two
decades) and the execution time per iteration for multiple surfaces.
The spread of data in the plot is directly related to differences in
the cost of evaluating the level set function and their derivatives for
each surface.

An alternative interpretation of the timing data is provided in
the plot on the right in Figure 7. Therein, we have normalized
the execution times and the data set sizes by corresponding values
from the smallest data set registered to a surface. For example,
we register point clouds of sizes 59 367, 191 045 and 822 537 to
the Blob surface, which requires 0.0195, 0.0625 and 0.273 s per
iteration. Labelling these data sets as DS-1, DS-2 and DS-3, the
problem scale factors of DS-2 and DS-3 are 191 045/59 367 ≈ 3.22
and 822 537/59 367 ≈ 13.86 and the scaled execution times are
0.0625/0.0195 ≈ 3.2 and 0.273/0.0195 ≈ 14.02. Hence, we find
that to register data sets DS-2 and DS-3 which are 3.22 and 13.86
times as large as DS-1, the algorithm takes 3.2 and 14.02 times as
much time as registering DS-1. Such a normalization serves to factor
out the differences in the cost of evaluating the implicit function and
their derivatives for the different surfaces. The plot shows that the
execution time of the algorithm scales linearly with the size of the
data set being registered, and in particular, reveals that there are
no significant overheads in the implementation of the algorithm.

c© 2018 The Authors
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(a) T4 (b) Tangled (c) T6

(d) Mullen (e) Pilz (f) Squared-torus

(g) Blob (h) Goursat (i) Rings

(j) Bretzel (k) Chair

Surface # points Jfinal/ Jinitial # iterations Exec. time (sec)

Blob 822537 1.96 × 10− 12 6 1.64

Bretzel 246600 2.87 × 10− 15 8 0.64

Chair 280206 1.13 × 10− 12 7 0.49

Goursat 456504 2.19 × 10− 12 6 1.18

Mullen 22938 3.78 × 10− 13 11 0.053

Pilz 223732 1.51 × 10− 13 10 0.52

(l)

Surface # points Jfinal/ Jinitial # iterations Exec. time (sec)

Squared-torus 350396 1.33 × 10− 12 7 5.29

T4 322928 3.93 × 10− 13 7 0.71

T6 443450 7.95 × 10− 14 11 3.46

Tangled 326628 1.26 × 10− 12 6 0.85

Rings 175733 4.35 × 10− 16 17 0.77

Monge 10000 4.53 × 10− 31 7 0.02

(m)

Figure 6: More example demonstrating the performance of Algorithm 1 for registering point clouds onto implicit surfaces. The level set
functions defining the surfaces shown are provided in Figure 5.

c© 2018 The Authors
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Figure 7: Plots examining the performance of our implementation of Algorithm 1 when registering data sets of varying sizes to each of the
12 surfaces depicted in Figure 6. The plot on the left shows that the execution time per iteration scales approximately linearly with the size of
the data set being registered. Normalizing the axes by the size and execution time for the smallest data set registered with each surface yields
the plot on the right. The close to ideal scaling reveals that the overheads involved in implementing the algorithm are negligible and that it is
straightforward to parallelize.

This observation suggests that it is straightforward to parallelize
the implementation of the algorithm. For instance, the assembly
of the matrix-vector system, which is the main contributor to the
algorithm’s execution time, can be distributed among multiple cores
in a shared memory machine using OpenMP directives.

Finally in Figure 8, we illustrate the performance of the algorithm
with noise added to the point cloud being registered. The noise
added in Figure 8(a) follows a uniform distribution, while that in
the remaining two examples follows a Gaussian distribution. We
mention that there are no special steps included in the algorithm
to account for the presence of noise — the algorithm is used as
is. While the results appear to be encouraging, special techniques
that model the noise distribution to achieve better registration will
inevitably be required.

3.7. Comparisons with alternative algorithms

We compare the performance of Algorithm 1 with alternative rigid
registration algorithms, namely point-to-point ICP, point-to-plane
ICP, coherent point drift (CPD) [MS10], 4PCS [AMCO08] and
Super4PCS [MAM14]. Before discussing our findings, we pro-
vide details of the data sets and the implementations used for each
algorithm.

Target data sets. The point cloud U to be registered by Algorithm
1, ICP (point-to-point and point-to-plane), CPD, 4PCS and
Super4PCS are all identical. However, the target data sets
are not. Algorithm 1 requires the target to be an implicit
surface, while ICP, CPD, 4PCS and Super4PCS require the
target to be a point cloud. To this end, we use a sampling of the
surface provided to Algorithm 1 as the target in the remaining
algorithms. In the process, we ensure that the sampling is
relatively uniform and that the number of sample points is
at least 2–3 times larger than the number of points in U.

Hence, the target point cloud provided to ICP, CPD, 4PCS
and Super4PCS is at least twice as dense as the data set U.

Implementations used. Numerous softwares, including open
source ones [CCC*08, BC11, clo18], provide efficient im-
plementations of ICP. Here, we use the implementation pro-
vided in the pcregistericp() routine as part of the Computer
Vision System Toolbox in Matlab [mat18]. The choice of ei-
ther the point-to-point or the point-to-plane distance metric
is specified through an argument passed to the function. We
do not employ any downsampling for the target point cloud.
In the case of the point-to-plane metric, we precompute the
normals to local tangent planes using 15 points with the pc-
normals() routine before invoking the registration function
call. The convergence tolerances required in the routine are
set to 10−8.
We use the Matlab implementation of CPD accessed from
[Myr] provided by the authors of [MS10]. All algorithmic
parameters are set to default values. With the intention of
using the most accurate version of the algorithm, we do not
employ the option for accelerating the algorithm using fast
Gauss transforms.
For 4PCS and Super4PCS, we use the C++ implementation
accessed from [Mel] provided by the authors of [MAM14].
We set the command line parameter for the estimated over-
lap to be 95% (-o 0.95) and for the number of sam-
ples to be used for matching to be 2000 (-n 2000). All
other algorithmic parameters are used as provided in the
implementation.

Error measures. Noting that all the experiments shown here use
synthetic examples, we measure the accuracy of each algo-
rithm in terms of the errors in the computed transformations:

E =
⎛⎝ 3∑
i,j=1

(
Rij − R�

ij

)2 +
3∑
i=1

(
ti − t�i

)2

⎞⎠1/2

, (21)
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(a) Mullen (b) T4 (c) Bretzel

Figure 8: Examples demonstrating the performance of Algorithm 1 with noise present in the point cloud data set. The noise added follows a
uniform distribution in (a) and a Gaussian distribution in (b) and (c).

where (R�, t�) represents the correct solution. Evidently, E is
the Frobenius norm of the difference between the homoge-
neous transformation matrices representing the correct and
computed solutions.

Timing. The run time for Algorithm 1 consists of the time required
for executing Newton iterations. This includes the time taken
to assemble the matrix-vector system, to solve the resulting
system of equations and to update the pose for the next itera-
tion. The execution time required for ICP is measured using
the timeit() routine in Matlab, which triggers various run-time
optimizations and calls the routine multiple times to report
the median of the measurements. When timing point-to-plane
ICP, we do not include the time required to compute normals.
The run times for CPD, 4PCS and Super4PCS are reported
by the implementations themselves.

Figure 9(a) reports the errors in the transformations computed
by each one of the six algorithms tested in five different exam-
ples. Without exception, we find that Algorithm 1 is more accurate
than the alternatives. We attribute this to the fact that Algorithm
1 naturally utilizes detailed information about the target data set
(normals and curvatures) without introducing a discretization for
it. Figure 9(b) reports the execution times for the different algo-
rithms in each example. Point-to-plane ICP and Algorithm 1 easily
outperform the remaining algorithms. We also find that for a fixed
number of iterations, Algorithm 1 is generally about 10 times faster
than point-to-plane ICP. We have omitted the timing data for point-
to-point ICP in Figure 9(b) because it requires a large number of
iterations (>500) to converge in the examples shown.

Based on estimates for their complexity, both CPD and 4PCS
are expected to be slow. The CPD algorithm can be sped up by
resorting to fast Gauss transforms; we have not used this option
because the resulting solutions are less accurate. Super4PCS is an
accelerated version of 4PCS. While it can be run faster by using
fewer matching points, we found that using fewer than 2000 points
resulted in incorrect solutions in some of the examples.

We conclude this discussion emphasizing that the comparisons
shown should be interpreted with caution. Unlike Algorithm 1, we
note that ICP, CPD, 4PCS and Super4PCS all presume the target
data set to be point clouds and therefore introduce some discretiza-
tion of the target surface. The notion of correspondence between
the model and target data sets is also very different among these al-
gorithms, which again, should be contrasted with Algorithm 1 that

does not introduce any notion of correspondence. There are various
aspects of CPD, 4PCS and Super4PCS that our examples here did
not test, including for instance, partial overlap between data sets or
the presence of noise/outliers. For these reasons, the comparisons
we have shown are necessarily subjective.

4. Generalizations

We devote this section to presenting a few generalizations of Algo-
rithm 1. In Sections 4.1 and 4.2, we discuss registering triangulations
and curves to implicit surfaces. The adaptations of Algorithm 1 re-
quired to this end are quite straightforward and essentially amount
to replacing summation signs with integrals. A unified interpretation
of these variants of Algorithm 1 is in fact possible, as we highlight
in Section 4.3. Finally, in Section 4.4, we present a modification of
Algorithm 1 that incorporates scale factors during registration.

4.1. Surface-to-surface registration

We consider the problem of registering a surface	 to a target surface
S. As we did in Algorithm 1, we assume S to be specified implicitly
according to Equation (10). We compute the pose (R, t) registering
	 onto S as a minimizer of the functional

Js(Q, s) � 1

2

∫
u∈	

ψ2(Qu + s) d	, (22)

where d	 represents the surface area measure of 	. Assuming 	 to
be specified parametrically over a domain A ⊂ R2, Equation (22)
can be written more explicitly as

Js(Q, s) = 1

2

∫
ξ∈A

ψ2(Q	(ξ ) + s) |	ξ1 × 	ξ2 | dξ, (23)

where we have denoted the parameterization of the surface also by
	, (ξ1, ξ2) denote the coordinates of ξ ∈ A and |	ξ1 × 	ξ2 |dξ is the
surface area measure at ξ .

Stationarity conditions and their linearization follow from calcu-
lations analogous to those in Sections 3.1 and 3.2, and Propositions 1
and 2. We only record the final expressions here and omit detailed
arguments. At the pose (R, t), the residual is given by

r(R, t) =
∫

A

[
(R	(ξ )) × ψ∇ψ(R	(ξ ) + t)

ψ∇ψ(R	(ξ ) + t)

]
|	ξ1 × 	ξ2 (ξ )| dξ,

(24)

c© 2018 The Authors
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Surface
Error in the computed transformation

Algo A ICP
(Point-to-Point)

ICP
(Point to Plane) CPD 4PCS Super4PCS

T4 6.67 × 10− 7 2.13 × 10− 4 1.67 × 10− 5 1.50 × 10− 4 2.24 × 10− 2 1.79 × 10− 2

Mullen 7.58 × 10− 7 2.44 × 10− 4 1.19 × 10− 5 1.90 × 10− 4 1.06 × 10− 1 1.90 × 10− 1

T6 9.89 × 10− 7 2.12 × 10− 4 2.12 × 10− 5 6.49 × 10− 4 7.78 × 10− 2 8.31 × 10− 2

Rings 7.41 × 10− 7 1.89 × 10− 4 7.91 × 10− 6 1.24 × 10− 4 3.24 × 10− 2 2.80 × 10− 2

Pilz 9.02 × 10− 7 7.22 × 10− 5 1.44 × 10− 6 6.90 × 10− 3 2.08 × 10− 2 5.13 × 10− 2

(a) Errors in transformations computed by each algorithm measured using the metric E defined in eq. (21).

Surface # model points # scene points
(ICP, CPD, 4PCS)

Execution time (seconds)

Algo A ICP
(Point-to-Plane) CPD 4PCS Super4PCS

T4 8236 32147 0.02 0.15 272.25 47.11 4.45

Mullen 9507 22938 0.18 0.16 149.99 9.71 3.45

T6 14852 47344 0.12 0.27 845.43 61.87 5.02

Rings 20133 52049 0.51 0.28 912.25 598.13 44.49

Pilz 20679 64400 0.44 0.31 1006.34 83.41 6.77

(b) Sizes of data sets and execution times for each algorithm.

Figure 9: A comparison of the performance of Algorithm 1 with alternatives from the literature, see Section 3.7 for details. We find that
Algorithm 1 easily outperforms the alternatives in terms of accuracy, while its run time is comparable to that of point-to-plane ICP.

and (R, t) is a stationary point of Js if r(R, t) = 0. The Jacobian
matrix, required for linearizing r, is given by

K(R, t) =
∫

A

[
Kθθ Kθt

Ktθ Ktt

]
6×6

∣∣∣∣∣
R	(ξ )+t

|	ξ1 × 	ξ2 | dξ, (25)

with: Ktt = ∇ψ ⊗ ∇ψ + ψ∇∇ψ,

Kθ t = ̂(R	(ξ )) Ktt

Ktθ = (
Kθ t

)t
,

and Kθθ = ( ̂(ψ∇ψ) − ̂(R	(ξ ))Ktt) ̂(R	(ξ )).

The algorithm for registering 	 to S is now identical to
Algorithm 1, with the expressions for the residual and Jacobian
required at each iteration now furnished by Equations (24) and (25).
The integrals appearing in these equations are evaluated using stan-
dard quadrature rules over the parametric domain A.

Figure 10 shows representative examples registering triangulated
surfaces (	) onto implicit surfaces (S). The unregistered surface 	
is shown in red, while the registered counterpart R	 + t is shown
in black. Virtually all details, including convergence criteria, are
identical to those used for registering point clouds to surfaces
in Algorithm 1. The last row of images in the figure shows
registration of noisy surfaces. For brevity sake, we omit providing
further details but mention that the number of iterations required

for computing a converged solution and the execution times are
comparable to those reported for Algorithm 1. We note that there
is no restriction that 	 be a triangulated surface; Equations (24)
and (25) are applicable for registering general parametric surfaces.
For instance, spline surfaces can be registered in this way. We have
chosen triangulated surfaces in our examples solely for the sake of
convenience.

4.2. Curve-to-surface registration

Next, we consider the problem of registering a curve γ to an implicit
surface S and compute the required pose (R, t) as a minimizer of
the functional

Jc(Q, s) � 1

2

∫
η∈I
ψ2(Qγ (η) + s) |γ ′(η)| dη, (26)

where we have assumed the curve to be parameterized as γ : I →
R3. Notice that we recover Equation (26) from Equation (23) by
simply replacing the integral over a surface with that over a curve,
and suitably replacing the measure used for integration. Indeed, the
expressions for the residual and Jacobian for this problem are vir-
tually identical to Equations (24) and (25), with surface integrals
replaced by line integrals. For this reason, we do not repeat the
expressions here. Representative examples demonstrating the regis-
tration of piecewise linear curves onto implicit surfaces are shown
in Figure 11.

c© 2018 The Authors
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(a) T4 (b) T6 (c) Mullen

(d) Pilz (e) Squared-torus (f) Blob

(g) Goursat (h) Bretzel (i) Monge

(j) Pilz with noise (k) T4 with noise (l) Bretzel with noise

Figure 10: Examples demonstrating pairwise registration of surfaces using an adaptation of Algorithm 1 that is discussed in Section 4.1.
In each case, the moving data set is a triangulated surface, while the corresponding target is an implicit surfaces. The unregistered surface
is shown in red, while the registered counterpart is depicted in black. The last row of images shows instances of registrations achieved with
noise added to the triangulations.

4.3. A unified algorithm for varied data sets

The resemblance of the objective functionals Jp, Js and Jc in Equa-
tions (12), (23) and (26), respectively, is difficult to miss. Evidently,
the differences in their definitions and in the residuals and Jaco-
bians arise solely because of the different nature of the data sets be-
ing registered, namely point clouds, surfaces and curves. A unified
perspective emerges by choosing a suitable measure for integration
over the data set being registered. Specifically, denoting the data
set to be registered by M, we set the objective functional at a pose
(Q, s) to equal

J(Q, s) � 1

2

∫
x∈M

ψ2(Qx + t) dμ, (27)

where dμ represents a measure on M. Then, notice that identifying

� M with the point cloud U and dμ with Dirac measures yields
Equation (12),

� M with the surface 	 and dμ with the surface measure yields
Equation (23) and

� M with the curve γ and dμ with the line measure yields Equa-
tion (26).
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(a) Squared-torus (b) Mullen

(c) Pilz (d) Monge

Figure 11: Examples showing the registration of (piecewise linear)
curves to implicit surfaces.

In this sense, Equation (27) represents a unified framework
for registering point clouds, curves and surfaces onto implicit
surfaces. Such a perspective has useful consequences for the
implementation of our algorithms as well. In our implementa-
tion for instance, we overload assembly operations based on the
type of data set being registered, while remaining aspects of
the algorithm remain common, thereby enabling extensive code
reuse.

4.4. Registration with scaling

It is often necessary to include a scale factor during registration.
Here, we discuss an adaptation of Algorithm 1 to include a scale
factor when registering a point cloud U onto an implicitly de-
fined surface S. We mention that the ideas discussed below ex-
tend verbatim to the case of registering surfaces and curves as
well.

Specifically, we seek a transformation of the form U 	→ cRU + t
that registers U onto S, with the scalar c > 0 understood to be an
(isotropic) scale factor. The inclusion of a scale factor hence pro-
vides an additional degree of freedom, which can help achieve better
registration. We consider a natural generalization of Equation (11),
wherein we seek a minimizer (R, t, c) of the functional

Ĵp(R, t, c) � 1

2

n∑
i=1

ψ2(cRui + t). (28)

In principle, it is possible to adopt a monolithic solution procedure
that computes (R, t, c) simultaneously as a set of seven unknowns.
We favour a staggered scheme instead, which sequentially approxi-
mates the pose (R, t) and then the scale c at each iteration. Hence,
the pose update at each iteration is identical to that in Algorithm
1, while the scale factor at a given pose (R, t) is computed as a
stationary point of the function

c 	→ 1

2

n∑
i=1

ψ2(cRui + t). (29)

The stationarity condition satisfied by the scale c in Equation (29)
is

r̂(R,t)(c) =
n∑
i=1

ψ(cRui + t)∇ψ(cRui + t) · (Rui) = 0. (30)

We resolve the nonlinear equation defining c in Equation (30) using
a Newton method, with the Jacobian corresponding to the residual
in Equation (30) given by

K̂(R,t)(c) =
n∑
i=1

(∇ψ(cRui + t) · (Rui))2

+ψ(cRui + t) ((Rui) · ∇∇ψ(cRui + t) · (Rui)) .

(31)

The generalization of Algorithm 1 now follows. Starting with the
initial guess (R0, t0, c0), at the (k + 1)th iteration, we do:

Algorithm 2

(i) Apply scaling: For each ui ∈ U, do ui 	→ cui .
(ii) Assemble: Kk = K(Rk, tk) and rk = r(Rk, tk) using eqs. (14)

and (16).
(iii) Solve: Compute the increments (�k+1,wk+1) satisfying

Kk

[
�k+1

wk+1

]
6×1

= −rk.

(iv) Pose update: Update the solution to

Rk+1 = ExpRk [�
k+1] and tk+1 = tk + wk+1.

(v) Scale estimate: Set c = 1.
(Newton iterations to compute c)

(a) Compute r̂ = r̂(Rk+1,tk+1)(c) using eq. (30).
(b) Compute K̂ = K̂(Rk+1,tk+1)(c) using eq. (31).
(c) Compute 
c = −r̂/K̂.
(d) Update c = c +
c.
(e) If |
c| < tolerance, break. Else go to (a).

Arguably, the nested Newton loop to compute the scale in step (v)
of the algorithm is unnecessary during the initial few registration
iterations when the pose estimate is likely to be far away from
the correct solution. As a more efficient alternative, we replace the
nonlinear problem defining c in Equation (29) by the minimizer of
the quadratic function

c 	→ 1

2

n∑
i=1

‖cRui + t −�(Rui + t)‖2, (32)

where � is the closest point projection onto S. The minimizer is in
fact explicitly computable:

c =
∑n

i=1(�(Rui + t) − t) · Rui∑n

i=1 ‖Rui‖2
. (33)

The estimate in Equation (33) is reminiscent of formulas used
to compute scale factors in ICP algorithms, cf. [Hor87, Ume91,
DZX*10]. In fact, Equation (33) can be interpreted as computing
the scale to register the cloud {Rui + t}i to the cloud of closest point
projections {�(Rui + t)}i lying on the surface S.
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(a) Goursat (b) Squared-torus

(c) Registration of noisy point clouds to implicit surfaces using Algorithm
2.

Surface
Error in (R, t) Error in scale factor Run time (seconds)

Algo 2 CPD Algo 2 CPD Algo 2 CPD

T4 0.028 0.029 0.0018 0.00025 0.12 280.42

Mullen 0.059 0.059 0.0052 0.0074 0.07 138.60

T6 0.041 0.029 0.0036 0.0017 0.62 907.42

Rings 0.029 0.029 0.0060 0.00026 0.36 1071.74

Pilz 0.056 0.057 0.018 0.0031 0.22 1584.16

(d) Comparison of Algorithm 2 with CPD for the examples shown in (c).

Figure 12: Illustrative examples demonstrating the performance of
Algorithm 2. The table in (d) compares the performance of Algo-
rithm 2 with CPD.

Equation (33) is, however, a heuristic estimate for the simple
reason that unlike Equation (29), the solution given by Equation (33)
has little to do with the objective functional Ĵp being minimized to
compute the registered solution. In our implementation, we use
Equation (33) to compute c in step (v) of Algorithm 2 for the first
few iterations after which we switch to the calculation provided in
the algorithm.

Representative examples demonstrating the performance of Al-
gorithm 2 are shown in Figures 12(a) and (b). Figure 12(c) shows
additional examples with normally distrbuted noise added to the
model data set. In these images, the unregistered data sets are
shown in red, while their registered counterparts are shown in green.

Figure 12(d) compares the accuracy and run times of Algorithm 2
with CPD for the examples shown in Figure 12(c). The table in
Figure 12(d) compares the errors in the computed transformations
(measured using Equation (21)) and the errors in the computed scale
factors. We find that the accuracy of the two algorithms are com-
parable for the examples considered. This is despite not including
any special procedures to account for noise in Algorithm 2. We
also highlight that CPD is many orders of magnitude slower than
Algorithm 2. We refer to Section 3.7 for details of the data sets used
in Figure 12(c), and for information on the implementation/options
used for CPD.

5. Extension to Pairwise Registration of Point Clouds

Next, we consider the problem of pairwise registration of point
clouds, a problem that is routinely solved by ICP as well as other al-
gorithms mentioned in Section 1. We revisit this problem mainly to
emphasize the generality of the proposed system of exponential co-
ordinates, besides demonstrating its applicability in resolving what
is perhaps the most ubiquitous version of the registration problem.

In the following, we denote the moving point cloud by U and the
target by V. We register U onto V in two ways: (i) by approximating
V with an implicit surface and invoking Algorithm 1, and (ii) by
resorting to an ICP-type algorithm while still using exponential
coordinates. We pursue these two approaches in Sections 5.1 and
5.2, respectively, and show illustrative examples along the way.

5.1. Registration with SSD functions

Let us assume that V consists of a set of points {vi}mi=1 and a corre-
sponding set of orientations (unit normals) {ni}mi=1. In constructing
an implicit surface S that approximates V, we seek a function ψ
such that in an approximate sense, the points {vi}i lie on the surface
S = ψ−1({0}) and the unit normal to S at vi coincides with ni . This
can be viewed as a data fitting exercise, with the function ψ sought
in the span of a chosen set of basis functions. Varied definitions of
such regression problems and constructions for smooth bases have
been proposed in the literature, see [CBC*01] for a representative
example.

Here, we define ψ to be a smoothed signed distance function
[CT11] by setting it to be the minimizer of the quadratic functional

E[ψ] =
m∑
i=1

ψ2(xi) +
m∑
i=1

‖∇ψ(xi) − ni‖2 + α

∫
�

|∇∇ψ |2 d�,

(34)

where � is the domain of definition for ψ and α > 0 is a user de-
fined parameter. The first term in Equation (34) enforces the requir-
ement that the zero-level set ofψ lies close to the points {vi}i , while
the second term constrains the normal to S at vi to approximate the
given orientation ni . The third term, roughly speaking, controls the
smoothness of ψ by penalizing the appearance of large curvatures.
Larger choices for α result in smoother surfaces S but at the ex-
pense of larger deviations from the input data V. The minimizer ψ
of Equation (34) is not a signed distance function in general. For
instance, its gradient on S may not have unit magnitude. This is,
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however, not a concern for us since we do not require ψ to be a
signed distance function in the first place.

In contrast to the algorithm proposed in [CT11] for resolving
Equation (34), we seek the minimizer ψ that is of the form

ψ(x) =
�∑
a=1

ψaNa(x), (35)

whereNa : � → R are local max-ent shape functions [AO06]. It can
be shown that Equation (34) has a unique solution of the form Equa-
tion (35) for anyα > 0. Local maximum entropy shape functions are
well suited for mesh-free approximation schemes, with the notable
feature of representing a Pareto optimality between maximizing the
entropy of approximation as well as maximizing the locality of
shape functions. Given an unorganized point cloud {ξa}�a=1 and a
parameter 0 < β < ∞, the value of the shape functions {Na(ξ )}a at
a point ξ in the interior of the convex hull of {ξa}a is given by

Na(ξ ) = exp[−β‖ξ − ξa‖2 + λ�(ξ ) · (ξ − ξa)]

Z(ξ,λ�(ξ ))
,

where the partition function Z is

Z(ξ,λ) �
�∑
a=1

exp[−β‖ξ − ξa‖2 + λ · (ξ − ξa)],

and λ�(ξ ) � arg minλ∈R3 logZ(ξ,λ).

Evidently, computing shape function values at a point itself requires
resolving a minimization problem. These are, however, small (three-
dimensional) convex problems and are therefore easily solved. Of
direct consequence to our purpose of computing ψ is the fact that
local max-ent functions are smooth, and in particular, twice continu-
ously differentiable. This is in contrast to conventional finite element
shape functions, which are only continuous and therefore ill-suited
for minimizing the functional in Equation (34). The radius of support
of max-ent shape functions is approximately

√− log(ε0)/β, where
ε0 is a given cut-off value for the shape functions. Consequently,
the parameter β directly controls the sparsity of the matrix realized
when resolving the linear system resulting from the minimization
of Equation (34).

Figure 13 shows an example computing an implicit representa-
tion using SSD functions for a subset of the Happy Buddha data
set retrieved from [TL]. The point cloud in black in Figure 13(a)
represents the input data set V. It is shown immersed in a uniform
grid of 21 × 21 × 21 nodes that constitute the set {ξa}a defining the
max-ent nodes. The parameter β is set to 0.8/h2, where h equals the
node spacing. The minimizer ψ of Equation (34) with the smooth-
ing parameter α = 0.01 is computed by resolving a sparse linear
system of 213 equations. The zero-level set S of the computed so-
lution is shown in Figures 13(b) and (c). The point clouds shown
in red, green and blue in Figure 13(d) are partial scans from the
Happy Buddha data set. The result of registering them onto the
zero-level set of the SSD function using Algorithm 1 is shown in
Figure 13(e).

Figure 14 shows a similar example in which the reference data
set S is the leaf pictured in Figure 14(a). A point cloud sampling
of the surface is measured using a laser-based scanner (Romer
Absolute Arm 7320) and is shown in black in Figure 14(b). Fol-
lowing a procedure similar to that in Figures 13(a)–(c), we com-
pute an implicit representation for the leaf surface as depicted in
Figures 14(c) and (d). Figures 14(e) and (f) show examples regis-
tering a point cloud and a triangulation to the implicit surface using
Algorithm 1.

5.2. An ICP-type algorithm with exponential coordinates

Rather than approximating the target point cloud V by an implicit
surface, we consider an ICP-like algorithm next to register U onto V.
Specifically, we seek the pose (R, t) that minimizes the functional

J(Q, s) � 1

2

n∑
i=1

‖Qui + s − vi�‖2, (36)

where vi� is the point in V closest to ui ∈ U. Equation (36) is
identical to the problem considered in ICP algorithms [Kab76]. A
closed form solution for Equation (36) is in fact furnished by the
singular value decomposition of the cross-correlation matrix of the
data sets U and V [Ume91]. Here, we show that it can be resolved
using local exponential coordinates as well.

(a) Input point cloud (in black)
from the Happy Buddha data set is
immersed in a grid of nodes defin-
ing local max-ent shape functions.

(b) Zero level set of the com-
puted SSD function.

(c) Comparison of the input
point cloud and its implicit
surface representation.

(d) Implicit surface and par-
tial scans for the Happy
Buddha data set.

(e) Registration of partial
scans achieved using Algo-
rithm 1.

Figure 13: Images (a)–(c) illustrate the approximation of an oriented point cloud by an implicit surface specified using an SSD function.
Images (d) and (e) show point clouds before and after registration to the surface.
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(a) Target surface: a
leaf

(b) Point cloud representation of the
leaf measured with a laser scanner is
embedded in a grid of max-ent nodes.

(c) Computed implicit surface rep-
resentation of (d).

(d) Comparison of the point sam-
pling and its implicitization.

(e) Registration of a point cloud to the leaf surface. (f) Registration of a triangulation to the leaf surface.

Figure 14: The top row of images shows the implicitization of a point cloud sampling of a leaf surface measured with a laser scanner. The
bottom row shows the registration of a point cloud and a triangulation onto the computed surface using Algorithm 1.

With the set of closest point associations between U and V held
fixed, the stationarity condition satisfied by the pose (R, t) follows
from Proposition 3 as

r(R, t) =
n∑
i=1

[
(vi� − t) × (Rui)
(Rui + t − vi�)

]
= 0. (37)

It is interesting to note that Equation (37) provides an alternate char-
acterization of the pose update in ICP using a variational approach
rather than by introducing cross-correlation matrices and their sin-
gular value decompositions. The Jacobian matrix corresponding to
the residual in Equation (37) follows from Proposition 4 as

K(R, t) =
n∑
i=1

[
− ̂(vi − t)(̂Rui) (̂Rui)

−(̂Rui) I

]
. (38)

It is important to recognize that Equations (37) and (38) only
hold with the correspondence between U and V held fixed. For this
reason, it is necessary to recompute correspondences between U
and V after each pose update. An ICP-like algorithm now follows.
Starting with an initial guess (R0, t0) for the solution, at the (k + 1)th

iteration, we do:

Algorithm 3

(i) Update correspondences: For each ui ∈ U, find vi� ∈ V clos-
est to Rkui + tk .

(ii) Assemble: Kk = K(Rk, tk) and rk = r(Rk, tk) using eqs. (37)
and (38).

(iii) Solve: compute the increments (�k+1,wk+1) satisfying

Kk

[
�k+1

wk+1

]
6×1

= −rk.

(iv) Update: the solution to

Rk+1 = ExpRk [�
k+1] and tk+1 = tk + wk+1.

An example using Algorithm 3 for coarse registration: In this
example, we register point clouds from partial scans produced with
a structured light-based stereo imaging setup [LT09]. The scanner,
which is shown in Figure 15(a), consists of a pair of calibrated
digital cameras and a digital light projector. With the cameras held
fixed, the clay vase to be reconstructed is placed on a turntable. By
rotating the turntable in small increments and imaging portions of
the vase surface falling within the field of view of the scanner (i.e.
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(a) Structured light optical scanner. (b) Marker detection for coarse registration.

View A

View B

(c) Registering corresponding markers from a pair of views (d) Coarse registration of 12 point cloud data sets.

Figure 15: A structured light optical scanner consisting of a pair of digital cameras and a projector is shown in (a). The model to be scanned
(a vase) is placed on a chessboard embedded with fiduciary markers shown in (b) to help estimate the motion of the turntable during scanning.
We use Algorithm 3 to register marker locations from multiple partial scans; an example is shown in (c). By applying the transformations that
align common sets of markers in different pairs of views to these partial scans, we get an approximately registered sampling of the surface.
The resulting coarsely registered point clouds are shown in distinct colours in (d).

cameras and projector) at each increment, we compute a sequence of
point clouds that each sample the object surface. A key requirement
for registering these partial scans is a coarse alignment step that
maps the measured point clouds to approximately correct locations.
In this example, we rely on special fiduciary markers developed in
[GJMSMCMJ14] and implemented in [Bra00] to compute coordi-
nate transformations that help to align partial scans. The resulting
registration procedure is automatic and does not rely on identify-
ing any features of the object. We also mention that the structured
lighting from the projector only serves to define correspondences in
images of the scanned surface and is entirely irrelevant for marker
identification and triangulation, and hence for the coarse registration
problem.

Figure 15(b) shows a representative image recorded by the left
camera with the turntable set at orientation B. Notice that the vase
sits on a chessboard pattern that rotates together with the turntable.
The white squares in the board are embedded with distinct
markers that help to robustly identify and enumerate corners in the
chessboard. Of course, due to occlusions, only few of the corners
in the board can be identified in each view. In this experiment,
55 corners are detected in view A, while 52 are identified in view
B. Among these, 43 corners are common to both views A and B.
We now triangulate the three-dimensional locations of these 43

corners in view A, which serves as the data set V for the problem
in Equation (37), while the corresponding corner coordinates in
view B defines the data set U. The two sets of reconstructed corner
locations are shown in Figure 15(c). The distinct identities of the
markers automatically define the correspondences between the
data sets U and V. Hence, the correspondence update in Algorithm
3 is performed just once and not at each iteration. Then, starting
with the initial guess (R0, t0) = (I, 0), Algorithm 3 computes the
transformation (R, t) mapping marker locations in view B to their
corresponding locations in view A. Figure 15(c) also shows the
final alignment achieved. Applying the coordinate transformation
computed by registering markers to the point cloud sampling of
the object surface coarsely registers the partial scan from view B
to that in view A. Figure 15(d) shows a coarse reconstruction of
the vase surface achieved by registering markers from 12 different
views and applying the computed transformations to the respective
point cloud samples measured in each view. In the figure, point
clouds from the different views are shown in distinct colours.

An example using Algorithm 3 for fine registration: Figure 16
shows an example using Algorithm 3 to register benchmark data
sets for the Happy Buddha retrieved from [TL]. We use data sets
as is from the repository without any post processing (e.g. out-
lier removal or smoothing) and register partial scans with a full
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(a) The data sets in gray, red, green, blue, orange, yel-
low and cyan correspond to files happy_vrip, happyStan-
dRight_{0,24,48,72,312,336} in the repository at [TL]. The target
data set is shown in gray.
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(b) Details of the iterations to convergence for the error functional
and the residual realized in registering the data sets shown in (a).

Figure 16: Fine registration of partial scans for the benchmark
example of the ‘Happy Buddha’ using Algorithm 3.

reconstruction [CL96]. The specifics chosen for this example are
intended to help easily reproduce the calculations reported here
without the need for any user defined parameters. Figure 16(a)
shows the target data set in gray consisting of approximately 540 k
vertices. This serves as the point cloud V in problem (36). The figure
also shows five point clouds in distinct colours representing partial
scans — each of these data sets will serve as U. These partial scans
are in independent coordinate systems, which is the reason why they
appear offset from the target cloud. Figure 16(a) shows the result
of registering the partial scans using Algorithm 3. It is worth noting
that the registration is successful (i.e. avoids local minima/maxima)
despite large errors in the initial poses. Details of the iterations to
convergence are reported in Figure 16(b). We find that the error
functional is reduced appreciably in each case.

6. Concluding Remarks

We introduced the idea of parameterizing isometries over local tan-
gent planes with exponential maps as a potent tool in a variational

framework for resolving registration problems. The algorithms pro-
posed here represent clear departures from existing registration
methods both in theory and practice. They are capable of han-
dling varied data sets in a unified manner (point clouds, curves and
surfaces) and enable adopting flexible error metrics during registra-
tion. They seamlessly couple correspondence and pose estimations,
and naturally exploit detailed information about target manifolds
(normals and curvatures) to achieve accurate registrations. They
are straightforward to implement and besides requiring tolerances
to detect convergence, do not rely on any heuristic user defined
parameters.

A prospective practical application of Algorithm 1 is in the con-
text of automated quality inspection during manufacturing. A point
cloud scan of a finished product, measured with a laser scanner for
instance, can be registered with its CAD model to identify deviations
from prescribed tolerances. Algorithm 1 is particularly appropriate
in such applications because it avoids introducing any discretiza-
tions of the CAD surface and therefore avoids introducing errors
which may be comparable with the geometric defects to be detected
in the first place.

We envision the ideas proposed here to be applicable in the more
general context of non-rigid registration problems as well. This is
because it is algorithmically convenient and practically meaningful
to compute non-rigid maps as a composition of simpler transfor-
mations, including rigid transformations. As a particular example,
we refer to [DZYL10] where affine transformations are computed
in such a manner. We also expect that the flexibility in choos-
ing objective functionals afforded by the proposed algorithms will
help to incorporate additional information such as textures during
registration.

One of the features common to all the algorithms we have dis-
cussed is that they achieve registration by resolving a set of sta-
tionarity conditions, which are a set of nonlinear equations. The
success of these algorithms is therefore subject to the usual intri-
cacies inherent in solving nonlinear systems. For instance, Newton
iterations may fail to converge if the initial guess is far away from
the correct solution. For the same reason, it is also possible that the
algorithms identify solutions that are stationary points but not the
global minimizer. These solutions are characterized by the resid-
ual being approximately zero despite the error functional remaining
large. In such scenarios, it is necessary to either interactively im-
prove the initial guess for the solution or resort to schemes that
systematically sample the solution space [MPD06, YLJ13].

A clear benefit of computing consistent linearizations of station-
arity conditions is the rapid convergence of Newton iterations close
to the optimal solution. Almost without exception, all the examples
presented here required a dozen or fewer iterations to compute the
optimal solution. Jacobian calculations are also useful for an entirely
different reason — when singular, its eigenvectors corresponding to
null eigenvalues reveal symmetries in data sets [SAD*16]. This may
include translational periodicity, rotational invariances or a combi-
nation of both. A consequence of the specific parameterization we
have adopted for rotations is that the Jacobian matrices computed
during Newton iterations are not expected to be symmetric except
at the converged solution. Specifically, the 3 × 3 block denoted by
Kθθ is not symmetric in general. For our purposes requiring the
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resolution of small linear systems (6 dofs in the case of isometries),
such a lack of symmetry poses no difficulties in practice.

There are of course numerous aspects of registration problems
which are important in practice but have been neglected here. This
includes issues of incorporating models for noise and measurement
errors into the problem definition. A detailed comparison of the
algorithms introduced here with more alternatives in the literature is
also important [SMFF07]. Finally, we note that our discussions and
examples have all been limited to pairwise registration of data sets.
Multi-view registration requires additional considerations to avoid
accumulation of errors as discussed in [Mas02].

Appendix A: Stationarity Conditions and their Linearizations

Proposition 1 (Registering point cloud U to the implicit surface S).
A minimizer (R, t) of the problem

Find (R, t) � arg min(Q,s)∈SO3×R3 Jp(Q, s), (A.1)

where Jp : SO3 × R3 → R is the functional

Jp(Q, s) � 1

2

n∑
i=1

ψ2(Qui + s)

satisfies the stationarity conditions

n∑
i=1

[
(Rui) × ψ∇ψ(Rui + t)

ψ∇ψ(Rui + t)

]
= 0. (A.2)

Proof. Recalling that Rε = ExpR[ε�̂] and using the shorthand
dRε/dε = R′

ε , we evaluate the variation of Jp with respect to ad-
missible variations of R as

〈δJp(R, t), �̂〉 � lim
ε→0

d

dε

1

2

n∑
i=1

ψ2(Rεui + t),

= lim
ε→0

n∑
i=1

ψ∇ψ(Rεui + t) · R′
εui (A.3a)

=
n∑
i=1

ψ∇ψ(Rui + t) · (
�̂Rui

)
(A.3b)

=
n∑
i=1

ψ∇ψ(Rui + t) · (� × (Rui)) (A.3c)

=
n∑
i=1

(Rui × (ψ∇ψ(Rui + t))) · �, (A.3d)

where we have used Equation (9) in Equation (A.3a), the definition
from Equation (4) in Equation (A.3b) and the invariance of scalar
triple products under circular shifts in Equation (A.3c). Similarly,
the sensitivity of Jp to admissible variations of the translation t is
computed as

〈δJp(R, t),w〉 � lim
ε→0

d

dε

1

2

n∑
i=1

ψ2(Rui + t + εw)

=
n∑
i=1

ψ∇ψ(Rui + t) · w. (A.4)

As expected, Equations (A.3) and (A.4) are linear in the arbi-
trarily chosen vectors w,� ∈ R3. Setting the computed varia-
tions to zero and invoking the arbitrariness of w and � yields
Equation (A.2). �

Proposition 2 (Linearization of stationarity conditions in Proposi-
tion 1). The linearization of

r(R, t) �
[

rθ (R, t)
rt(R, t)

]
=

n∑
i=1

[
(Rui) × ψ∇ψ(Rui + t)

ψ∇ψ(Rui + t)

]
(A.5)

at the configuration (R, t) along (�̂,w) is given by

L(R,t)r(�̂,w) = r(R, t) + K(R, t)
[

�

w

]
, (A.6)

where

K(R, t) =
n∑
i=1

[
Kθθ
i Kθt

i

Ktθ
i Ktt

i

]
6×6

∣∣∣∣∣
Rui+t

, (A.7)

with: Ktt
i = ∇ψ ⊗ ∇ψ + ψ∇∇ψ,

Kθ t
i = (̂Rui) Ktt

i

Ktθ
i = (

Kθ t
i

)t
,

and Kθθ
i =

(
̂(ψ∇ψ) − (̂Rui)Ktt

i

)
(̂Rui).

Proof. For the sake of notational simplicity, we omit the sum ap-
pearing in the expressions for r and K since the index i is irrelevant
in the proof. Instead we will denote a generic point ui as u and
assume r to be simply given by

r(R, t) =
[

rθ

rt

]
=

[
(Ru) × ψ∇ψ

ψ∇ψ
]∣∣∣∣∣

Ru+t

.

Computing the directional derivatives of r along admissible varia-
tions w of t, we get

Drt(R, t) · w = lim
ε→0

d

dε
(ψ∇ψ(Ru + t + εw))

= (∇ψ(∇ψ · w) + ψ(∇∇ψ w))
∣∣∣
Ru+t

= (∇ψ ⊗ ∇ψ + ψ∇∇ψ)︸ ︷︷ ︸
Ktt

∣∣∣
Ru+t

w,

which proves the required expression for Ktt. Similarly,

Drθ (R, t) · w = lim
ε→0

d

dε
((Ru) × ψ∇ψ(Ru + t + εw))

= (Ru) ×
(

lim
ε→0

d

dε
(ψ∇ψ(Ru + t + εw))

)
= (Ru) × (

Kttw
) ∣∣∣

Ru+t

= (̂Ru) Ktt︸ ︷︷ ︸
Kθt

∣∣∣
Ru+t

w,
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proving the expression for Kθt. Next, computing derivatives along
admissible variations of the rotation R, we have

Drt(R, t) · � = lim
ε→0

d

dε
(ψ∇ψ(Rεu + t))

= (∇ψ(∇ψ · �̂Ru) + ψ∇∇ψ(�̂Ru))
∣∣∣
Ru+t

= (∇ψ ⊗ ∇ψ + ψ∇∇ψ)︸ ︷︷ ︸
Ktt

∣∣∣
Ru+t

(�̂Ru)

= Ktt(� × Ru)
∣∣∣
Ru+t

= −Ktt (̂Ru)
∣∣∣
Ru+t

�.

= ((̂Ru) Ktt)t︸ ︷︷ ︸
(Kθ t)t=Ktθ

∣∣∣
Ru+t

�,

where in the last step we have used the facts that Ktt is symmetric
and (̂Ru) is skew. Finally,

Drθ (R, t) · � = lim
ε→0

d

dε
(Rεu × ψ∇ψ(Rεu + t))

= (�̂Ru × ψ∇ψ + Ru × Ktθ�)
∣∣∣
Ru+t

= ((� × Ru) × ψ∇ψ − Ru × Ktt (̂Ru)�)
∣∣∣
Ru+t

= (ψ∇ψ × (Ru × �) − (̂Ru)Ktt (̂Ru))
∣∣∣
Ru+t

= ( ̂(ψ∇ψ)(̂Ru) − (̂Ru)Ktt (̂Ru))
∣∣∣
Ru+t

�

= ( ̂(ψ∇ψ) − (̂Ru)Ktt)(̂Ru)︸ ︷︷ ︸
Kθθ

∣∣∣
Ru+t

�,

yielding the required expression for Kθθ . �

Proposition 3 (Pairwise registration of point clouds U to V). Let
U = {ui}ni=1 and V = {vi}mi=1 be a pair of point clouds. For each
ui ∈ U, denote the point in V closest to ui by vi�. Then, a stationary
point (R, t) of the functional

J(Q, s) � 1

2

n∑
i=1

‖Qui + s − vi�‖2

satisfies the stationarity conditions

r(R, t) �
[

rθ (R, t)
rt (R, t)

]
=

n∑
i=1

[
(vi� − t) × (Rui)
(Rui + t − vi�)

]
= 0. (A.8)

Proof. Adopting the shorthands Rε = ExpR[ε�̂], R′
ε = dRε/dε,

we have

〈δJ(R, t), �̂〉 = lim
ε→0

d

dε

n∑
i=1

1

2
‖Rεui + t − vi�‖2

=
n∑
i=1

lim
ε→0

(Rεui + t − vi�) · (R′
εui)

=
n∑
i=1

(Rui + t − vi�) · (�̂Rui) (A.9a)

=
n∑
i=1

(Rui + t − vi�) · (� × (Rui)) (A.9b)

=
n∑
i=1

� · ((Rui) × (Rui + t − vi�)) , (A.9c)

=
n∑
i=1

� · ((vi� − t) × (Rui)) ,

where we have invoked Equation (9) in Equation (A.9a), the defi-
nition from Equation (4) in Equation (A.9b) and the invariance of
scalar triple products under circular shifts in Equation (A.9c).

Evaluating the variation of J with respect to translational dofs is
more straightforward. We have

〈δJ(R, t),w〉 = lim
ε→0

d

dε

1

2

n∑
i=1

‖Rui + t + εw − vi�‖2

=
n∑
i=1

(Rui + t − vi�) · w. (A.10)

Setting the variations in Equations (A.9) and (A.10) to zero and
invoking the arbitrariness of �,w ∈ R3 yields Equation (A.8). �

Proposition 4 (Linearization of stationarity conditions in Proposi-
tion 3). The linearization of

r(R, t) �
[

rθ (R, t)
rt(R, t)

]
=

n∑
i=1

[
(vi� − t) × (Rui)
(Rui + t − vi�)

]
(A.11)

at the pose (R, t) along (�̂,w) is given by

L(R,t)r(�̂,w) = r(R, t) + K(R, t)
[

�

w

]
,

where K(R, t) =
n∑
i=1

[
− ̂(vi� − t)(̂Rui) (̂Rui)

−(̂Rui) I

]
. (A.12)

Proof. For the sake of notational simplicity, we omit the sum ap-
pearing in the expressions for r and K since the index i is irrelevant
in the proof. Instead we will denote a generic corresponding point
pair ui , vi� simply as u, v� and assume that

r(R, t) �
[

rθ (R, t)
rt(R, t)

]
=

[
(v� − t) × (Ru)
(Ru + t − v�)

]
.
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Proceeding to compute the block matrices in Equation (A.12) con-
stituting K, we have:

Kθθ� = lim
ε→0

d

dε
((v� − t) × (Rεu))

= lim
ε→0

(v� − t) × (R′
εu)

= (v� − t) × (�̂Ru)

= − ̂(v� − t)(̂Ru)�. (A.13a)

Kθ tw = lim
ε→0

d

dε
((v� − t − εw) × (Ru))

= −w × (Ru) = (̂Ru)w. (A.13b)

Ktθ� = lim
ε→0

d

dε
(Rεu + t − v�)

= lim
ε→0

R′
εu = �̂Ru = −(̂Ru)�, (A.13c)

and Kttw = lim
ε→0

d

dε
(Ru + t + εw − v�) = I w.

(A.13d)

Equation (A.12) now follows from Equation (A.13). �
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