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a b s t r a c t

Various applications ranging from pipeline inspection to robot-assisted surgery require highly ma-
neuverable devices with precisely controllable tips. In this article, we propose and experimentally
validate a mechanics-based approach to manipulate the quasistatic planar motion of the tip of a
flexible arm by controlling the tensions in a pair of cables attached to its centerline. We show
that by adopting a geometrically nonlinear elastica model for the arm, by carefully accounting for
configuration-dependent tendon loadings, and by interpreting the problem of manipulating the tip of
the arm as one of load optimization, it is possible to realize a high degree of accuracy. In the process,
we also identify interesting features of the tendon-loaded elastica problem. Our tip-control strategy
is based solely on a predictive elastica model, does not require any sensors and does not employ any
feedback. The resulting elastica robot is slender, remotely actuated, energy-efficient and miniaturizable.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

An emerging class of robots is composed of flexible structures
and function by exploiting the compliances of their constitutive
elements. Such robots are aimed at applications that demand
high maneuverability for navigation in closed or cluttered en-
vironments, that require interaction with compliant substrates,
and at applications where energy-efficiency is critical [1–4]. Their
operating principle stands in stark contrast to traditional robots,
which are typically composed of networks of links with actu-
ated joints whose compliances are generally considered to be a
hindrance for controlled operation [5,6].

Designing and fabricating flexible robots is a challenging en-
deavor, involving a multitude of considerations ranging from
the choice of materials, power requirements, actuation mecha-
nisms, sensors, multi-functionality, bulk manufacturability, and
cost [7,8]. Material considerations are especially critical in soft
robots made of biologically inspired and elastically soft materials
such as gels and elastomers [9,10]. Our work here is motivated
by the observation that developments in strategies for controlling
flexible elements in robots lags behind technologies for designing
and fabricating them [11].

In this context, we consider the problem of controlling the
quasistatic planar motion of the tip of a flexible tendon-actuated
elastic arm. Referring to the arrangement depicted in Fig. 1a
consisting of a slender flexible arm clamped at one end and
loaded by a pair of cables, we demonstrate that by modeling the
highly deformable arm as an elastica and posing tip-control as a
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problem of optimizing tensions in the cables, the tip of the arm
can be accurately positioned within a feasible workspace. The
resulting robot is energy-efficient since the strain energy stored
in the arm during operation is fully recoverable, and is well suited
for miniaturization.

A key factor that distinguishes various flexible robots is the
actuation mechanism used. Tendon and pneumatic actuation are
the most commonly used in practice [12–14]. Our choice of
tendon actuation is based on its simplicity and ease of exper-
imental realization. It additionally permits the actuators (mo-
torized spools) to be located remotely. This is in contrast to
designs where the actuating mechanism is an integral part of
the deformable robotic arm. For instance, distributed pneumatic
actuators that attempt to mimic muscular control are used in
applications seeking to replicate bio-locomotion [15,16]. Simi-
larly, incorporating actuatable fiber reinforcements in specific
directions along an arm can help it achieve complex motions
[17,18].

The tip-control problem for flexible arms that we consider
here is certainly not new [19,20]. Early investigations modeled
elastic arms as Euler–Bernoulli beams. Linearized kinematics is
helpful in devising control algorithms [21] and is suitable for
problems such as rest-to-rest maneuvers, but certainly not for our
application where the arm necessarily undergoes large displace-
ments and its sections undergo large rotations [22]. A pervasive
assumption that attempts to account for finite deflections is the
‘‘constant curvature’’ approximation, wherein each section of the
arm demarcated by tendon actuation points is assumed to bend
into an arc of a circle [23]. The assumption is based on re-
placing tendon loads by point moments and has the convenient
consequence of transforming the control problem into one of
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Fig. 1. Illustration of the experimental setup and its idealization. The polycarbonate arm in (a) has Young’s modulus ≈ 2.2GPa, length ℓ = 600mm, width 40mm
and thickness 3mm, resulting in a bending stiffness of B ≈ 0.2Nm2 . Each actuating tendon is attached to the centerline of the arm at one end and is routed through
a fixed point to a motorized spool at the other. The first tendon is attached at a distance of s1 = 200mm from the clamped end while the second tendon is attached
at s2 = 600mm to the tip of the arm. Routing points of the two tendons are located at r1 = (46.3,−97.1)mm and r2 = (26.1, 51.1)mm in the coordinate system
indicated in (b). The cost of the setup, based on a conversion rate of INR 70/USD, is approximately $255 and consists of 2 × $55 for stepper motors, 2 × $50 for
motor drivers, and $15 each for an Arduino board, DC power supply and materials.

inverse kinematics. We will show that such an approach is not
suitable for our purposes, cf. [24]. Geometrically nonlinear models
for flexible arms have been examined more recently, but are
generally limited to the direct problem of predicting deflections
when given the tensions in the cables [25]. Our approach to the
tip placement problem is inspired by [26], and bears superficial
similarities with certain inverse problems posed for the elastica to
determine terminal forces and moments when given the locations
of its end points [27].

2. An elastica model for tendon-actuated arms

The schematic in Fig. 1b represents an idealization of the setup
in Fig. 1a. A straight elastic arm of length ℓ is loaded by a pair
of tendons attached at distances s = s1 and s = s2 along its
centerline, where s ∈ [0, ℓ] denotes the arc-length parameter of
the centerline measured from the clamped end and 0 < s1 < s2 ≤
ℓ. In the following, we set s2 = ℓ and assume actuation using two
tendons, but note that generalizations to multiple loads and to
the case s2 < ℓ are straightforward to work out. We presume
the arm to be inextensible and its cross sections to be rigid
and unshearable. Consequently, the deformation of the arm that
results from imposing tensions P = (P1, P2) in the two tendons
can be parameterized by the inclination angle s ↦→ θ (s; P) of the
tangent to the centerline. In a Cartesian system centered at the
clamped end and having its x-axis coincide with the undeformed
beam, the tangent to the centerline is given by

t(s; P) = (cos θ (s; P), sin θ (s; P)), (1)

from where the coordinates of the deformed centerline follows as

s ↦→ x(s; P) =
∫ s

ξ=0
(cos θ (ξ ; P), sin θ (ξ ; P)) dξ . (2)

In particular, x1(P) ≜ x(s1; P) and x2(P) ≜ x(s2; P) identify points
of attachment of the tendons in the deformed configuration.
The second argument P of θ , t and x explicitly denote their
dependence on the loading. Though unnecessary for our current
discussion, this dependence will be the basis for subsequent
developments in Section 3.

To formulate the statement of moment balance governing
static equilibrium of the arm, it is necessary to account for the fact

that the orientation of each tendon is configuration-dependent.
Labeling the fixed routing points of the two cables by r1 and r2,
the direction cosines of the cable orientations are given by

di(P) =
ri − xi(P)
∥ri − xi(P)∥

, i = 1, 2, (3)

and the actuating forces by

Fi(P) = Pi di(P) for i = 1, 2. (no sum implied) (4)

Assuming a linear relationship between the curvature θ ′ ≜ dθ/ds
of the centerline and the resultant moment, balancing internal
and external moments at a point 0 < s < s1 yields

Bθ ′(s; P) =
2∑

i=1

(xi(P)− x(s; P))× Fi(P), (5)

where B is the bending stiffness of the arm and × is the usual
cross product operation on vectors. Differentiating Eq. (5) with
respect to the parameter s, we get the statement of force balance:

Bθ ′′(s; P)+ t(s; P)× (F1(P)+ F2(P)) = 0. (6)

Arguing the same way, force balance at a point s1 ≤ s < s2 is
given by

Bθ ′′(s; P)+ t(s; P)× F2(P) = 0. (7)

Eqs. (6) and (7) can be succinctly combined using the Heaviside
function H as

Bθ ′′(s; P)+ t(s; P)× (H(s1 − s)F1(P)+ F2(P)) = 0, (8)

which is supplemented with boundary conditions θ (0; P) = 0 and
θ ′(ℓ; P) = 0 representing the clamped and moment-free ends.
Eq. (8) is our model for the tendon-actuated arm — it determines
the deflection of the arm when given the tensions in each cable.

Eq. (8) is equivalent to the principle of virtual work

G(θ, δθ ) ≜
∫ ℓ

s=0
Bθ ′δθ ′ ds

−

∫ s1

s=0
(t(s; P)× F1(P)) δθ ds

−

∫ s2

s=0
(t(s; P)× F2(P)) δθ ds = 0, (9)
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which holds for all admissible variations s ↦→ δθ (s). The form of
Eq. (9) is directly useful for computing θ using a finite element
method. We employ a straightforward implementation to this
end, comprising of piecewise linear elements to discretize the in-
clinations s ↦→ θ (s; P), consistent linearization of G to determine
the stiffness matrix, and a Newton–Raphson scheme for resolving
the resulting set of nonlinear algebraic equations. We refer to
[26, Section 2] for comparisons of numerical solutions of Eq. (9)
with closed-form solutions derived for special cases in [28,29] and
with experimental measurements.

Nonlinearity in the model represented by Eq. (8) is purely geo-
metrical and stems from three sources — computing curvatures of
the centerline exactly, measuring moment arms of loads without
approximation, and accounting for the dependence of tendon
inclinations on the deformation. Implicit in the linear assumption
between curvatures and resultant moments is the requirement
that strains be small and that the material remain elastic. Hence,
the model in Eq. (8) permits large rotations and displacements,
but is necessarily restricted to small curvatures.

3. Tip-control through load optimization

We now proceed to the problem of placing the tip of the
flexible arm in Fig. 1 at a desired location xd by imposing suitable
tensions in the cables. To this end, introduce a cost function

E(P) ≜
1
2
∥xd − xt(P)∥2 (10)

to measure the deviation of the tip location xt(P) ≜ x(ℓ; P)
of the arm at static equilibrium, from the desired position xd.
The dependence of E on cable tensions in Eq. (10) is implicitly
conveyed by the tip location computed using Eq. (2). We now
pose tip-control as a parameter optimization problem for P1 and
P2:

Find P ∈ argmin
P∈[R≥0]2

{E(P) : G(θ, δθ ) = 0 ∀δθ} . (11)

Eq. (11) is a minimization problem that is constrained by the
nonlinear state equation (8) and the convex constraints P1,2 ≥ 0
on the set of feasible solutions.

If the target point xd lies within the workspace (see Eq. (18)),
the non-negative function E necessarily attains its global mini-
mum value of zero for at least one pair of cable tensions. For
such points, we identify the minimizer in Eq. (11) by resorting
to a numerical gradient descent scheme. For this purpose, we
compute the gradient of E next.

Differentiating Eq. (10) with respect to the tension Pi, we get
∂E
∂Pi
= (xt(P)− xd) ·

∂xt(P)
∂Pi

, i = 1, 2. (12)

In Eq. (12), ∂xt(P)/∂Pi represents the sensitivity of the tip of the
arm to the tension in the ith cable, and is computed using Eq. (2)
as
∂xt(P)
∂Pi

=
∂

∂Pi

∫ ℓ

s=0
(cos θ (s; P), sin θ (s; P)) ds

=

∫ ℓ

s=0
(− sin θ (s; P), cos θ (s; P))  

n(s;P)

∂θ (s; P)
∂Pi  

αi(s;P)

ds

=

∫ ℓ

s=0
n(s; P)αi(s; P) ds, (13)

where n is the normal to the centerline and αi is the sensitivity
of the solution θ to the load Pi. Evidently, if we can compute
s ↦→ (α1(s; P), α2(s; P)), we can compute the sensitivity of the
tip location xt(P) to each load using Eq. (13), then the gradient

of E using Eq. (12), and therefore identify a descent direction for
minimizing E. To this end, differentiating Eq. (8) with respect to
Pi, we get

Bα′′i (s; P)+
∂t(s; P)

∂Pi
× (H(s1 − s)F1(P)+ F2(P))

+ t(s; P)×
(
H(s1 − s)

∂F1(P)
∂Pi

+
∂F2(P)

∂Pi

)
= 0, (14)

which, along with the boundary conditions αi(0; P) = 0 and
α′i (ℓ; P) = 0 that follow from those for θ , defines a boundary
value problem for the sensitivities s ↦→ (α1(s; P), α2(s; P)).

Sensitivities of t, F1 and F2 appearing in Eq. (14) can be explic-
itly computed using their definitions in Eqs. (1), (3) and (4). For
the tangent, we have
∂t(s; P)

∂Pi
= (− sin θ (s; P), cos θ (s; P))αi(s; P)

= n(s; P)αi(s; P). (15)

Sensitivities of the actuating forces follow from Eqs. (3) and (4)
as
∂Fj(P)
∂Pi

= δijdj(P)+ Pj
∂dj(P)
∂Pi

(16)

where δij is the Kronecker-delta symbol and

∂dj(P)
∂Pi

=
∂

∂Pi

(
rj − xj(P)
∥rj − xj(P)∥

)
=

(
dj(P)⊗ dj(P)− I
∥rj − xj(P)∥

)
∂xj(P)
∂Pi

, (17)

where ⊗ is the dyadic product.
Algorithm 1 summarizes the load optimization scheme for

tip-control in a stepwise manner. In our implementation of the al-
gorithm, we use the sparse data structures and nonlinear solvers
provided by the PETSc library, and the gradient descent routines
with adaptive step sizing implemented in the TAO optimization
library [30]. Fig. 2 uses an example to illustrate the descent
iterations in the algorithm to place the tip of the arm in Fig. 1 at a
specified location. Since the trivial initial guess P = (0, 0) for ca-
ble tensions is far from the optimal value, the algorithm requires
over a dozen iterations to converge. As depicted in Fig. 2b, some
of the intermediate load iterates are even inadmissible since the
constraints P1,2 ≥ 0 were not explicitly enforced. The monotonic
decrease in the cost function observed in Fig. 2c is a direct
consequence of accurately computing its sensitivities in Eq. (12).
The tolerance set for convergence of E implies an accuracy of
10−5 mm for the tip position.

A few additional remarks are in order. Geometric nonlinear-
ities inherent in the model for the direct problem are evident
in the sensitivity calculations as well. Eq. (15) measures the
influence of cable tensions on the local curvature. Eq. (17) reveals
how the tension in each cable influences the orientations of every
cable, and hence, an innate coupling between the actuating forces.
Despite the seemingly tedious nature of Eq. (14) that results from
substituting the expressions in Eqs. (15) to (17), Eq. (14) is in fact
a linear ordinary differential equation for αi, i = 1, 2. Hence, we
approximate α1 and α2 using a linear finite element method and
exploit the fact that the stiffness matrices required to compute
the two sensitivities are identical. The weak forms required for
these calculations can be derived either from Eq. (14), or by
differentiating Eq. (9) with respect to P1 and P2.

4. Experimental realization

We devote this section to experimentally examining the ac-
curacy of tip-control realizable with Algorithm 1. Fig. 1a shows
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Fig. 2. An example illustrating the iterations in Algorithm 1 to compute
the optimal cable tensions to place the tip of the arm in Fig. 1 at xd =
(535.8, 222.6)mm.

Algorithm 1 Gradient descent for load optimization

1: function TipControl(P0, xd, γ , ε)
2: xd ← target tip position
3: P← P0

: initial guess for loads
4: γ ← descent step size
5: ε← tolerance for convergence of E
6: while true do
7: Compute θ satisfying G(θ, δθ ) = 0 ∀ δθ

▷ See Eq. (9)
8: if E(P) < ε then
9: break! ▷ Tip location has converged

10: end if
11: Compute (α1, α2) satisfying Eq. (14)
12: Compute ∇PE(P) using Eq. (12)
13: Update load guesses P← P− γ∇PE(P)
14: end while
15: Compute tendon lengths

Li = ∥xi(P)− ri∥, i = 1, 2.

16: return Tensions P and tendon lengths (L1, L2)
17: end function

details of the experimental setup used. Physical properties of
the arm and geometric dimensions relevant to the setup are
mentioned in the caption under the figure. Small holes located
along the centerline of the arm serve as attachment points for
two metal-reinforced cables. The cables are sufficiently stiff (≈
4.9 kN/mm), which warrants treating them as rigid structures
when in tension. The length of the arm is short enough so that
its centerline does not visibly sag due to gravity, and its width is
large enough to reduce axial twisting caused by small deviations

between the plane of the centerline and the planes swept by the
tendons. Each cable is routed through a fixed point to a motorized
spool, which reels in/out the cable, thereby controlling its length
and in turn the tension it bears. A light attachment holds a pen
to trace the location of the tip as the arm deforms.

4.1. Length controlled experiments

It is possible to impose the tensions (P1, P2) computed by
Algorithm 1 by coupling each cable with a tension gauge. For
the sake of simplicity and to avoid errors caused by friction
between cables and their routing posts, we instead impose the
cable lengths (L1, L2) computed in the algorithm. Hence, actuat-
ing the arm translates to prescribing the number of revolutions
required of each motor. Equivalence between load and length
control requires a monotonic relationship between cable lengths
and tensions during operation, which we have verified to be the
case in our examples.

4.2. Examples

We use the two examples in Fig. 3 to examine the accuracy of
tip-control realizable using Algorithm 1. Movies of these exper-
iments are provided as supplementary materials accompanying
this article. For the example in Fig. 3a, Algorithm 1 precomputes
the cable lengths required to place the tip of the arm along the
edges of an equilateral triangle, along its incircle and along its
circumcircle. Dashed arrows in the figure indicate the sequence
in which points are provided to the algorithm. Imposing the com-
puted cable lengths by slowly operating the two motors causes
the pen attached at the tip of the arm to trace the prescribed
shapes. The figure shows a scan of the drawing sheet from the
experiment and snapshots of the arm during the tracing process.
The dimensions superimposed on the traced shapes demonstrate
that edge lengths of the triangle, radii of the two circles, angles
between the triangle edges, and tangency of the incircle to the
edges are all nearly exact. Three repetitions of the experiment
revealed errors in lengths and angles to be consistently under
2mm and 1◦, respectively.

In the second example in Fig. 3b, the sequence of points
provided to Algorithm 1 are shown as green dots superimposed
on the drawing sheet from the experiment. Actuating the arm by
imposing the sequence of computed cable lengths results in the
tip tracing the curve in orange, which closely follows the specified
set of points. The figure also shows snapshots of the arm as it
traces a convoluted curve. Small deviations not exceeding 2mm
are visible at a few locations.

4.3. Workspace

An important consideration in robotics applications is the
extent of the workspace. In our context, the workspace is the
locus of the tip of the arm as the tensions in the cables are varied:

W0 ≜ {xt(P) : P1,2 ≥ 0}. (18)

Besides showing that W0 is a set parameterized by P1 and P2,
the implicit dependence of the map P ↦→ xt(P) on the design
specifications, namely, the length of the arm, the number of load-
ing tendons used, the locations of tendon attachments along the
arm, and the routing point set for each tendon, reveals that W0 is
determined by these parameters. The set of green points in Fig. 4
is a sampling Wsam

0 of W0 computed using Algorithm 1. The figure
shows, as expected, that the workspace is bounded on one side by
the locus of the tip realized by setting P1 = 0. Regions in the half-
plane y ≥ 0 that are not sampled well owing to numerical con-
vergence difficulties are indicated in the figure. To adhere closely
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Fig. 3. Experiments demonstrating tip-control using Algorithm 1. Videos of the experiments are provided as supplementary materials.

to our experimental investigations, we limit the sampling of the
workspace to just the upper half plane. Hence, Wsam

0 only samples
a subset of W0. The figure also shows a circular path that repre-
sents the workspace of a rigid link of length ℓ hinged at the origin.

Besides non negativity of loads, additional constraints restrict
the workspace in practice.

(i) To facilitate repeated use, it is necessary to ensure that the
material constituting the arm does not yield or fracture. Without
loss of generality, such a restriction can be represented as an up-
per bound on the maximum strain permitted during deformation.
Correspondingly, the locus of the tip is limited to the set

WY ≜ W0 ∩ {xt(P) : max
0≤s≤ℓ
|θ ′(s; P)| < 2εY/h}, (19)

where εY is the failure strain and h is the thickness of the arm.

(ii) The next restriction stems from the requirement that the
workspace only consist of tip locations of configurations at stable
equilibrium. We denote the corresponding set by

WS ≜ W0 ∩ {xt(P) : θ (s; P) is stable}. (20)

It is important to note that stability of equilibria in load and
length controlled settings are quite different, see Section 4.6. For
the purpose of discussing the extent of the workspace, we assume
a load controlled scenario.
(iii) Depending on the application, the total energy available for
operating the arm may be limited. This is the case, for instance,
when the energy source is a battery pack. Neglecting frictional
losses, the strain energy stored in the arm is a direct measure of
the total energy required. Energy considerations hence limit the
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Fig. 4. The set Wsam
0 consisting of 4201 green points, is a sampling of the

workspace W0 of the elastic arm in the half plane y ≥ 0. Red points bounding
Wsam

0 on one side require P1 < 0 and are therefore not part of the workspace.
The dashed line in black represents the locus of the tip of a rigid link of length
ℓ hinged at the origin.

workspace to

WE ≜ W0 ∩ {xt(P) :
1
2

∫ ℓ

s=0
Bθ ′2(s; P) ds < SEmax}. (21)

(iv) Closely related to Eq. (21), and particularly relevant to our
setup, are limitations on the workspace arising from the torque
ratings of the motors driving the tendon spools. Assuming the
capacities of the two motors to be identical and converting their
ratings to a critical force Pcrit, the workspace is limited to

WP ≜ W0 ∩ {xt(P) : P1,2 < Pcrit}. (22)

Fig. 5 examines each of the above four criteria over the set
of sample points Wsam

0 . The examples discussed in Section 4.2
are superimposed in the images to help examine the ranges of
parameters realized in the experiments. Fig. 5a shows contours
of the non dimensionalized maximum curvature ℓκmax(P) =
max0≤s≤ℓ |ℓθ

′(s; P)|. Setting the strain to failure by yielding as
εY = 2.5% for polycarbonate and noting that the thickness of
the arm is h = 3mm, the maximum permissible curvature
according to Eq. (19) is (2 × 0.025/3)mm−1, which when non
dimensionalized by ℓ, sets a limiting value of 10. The figure shows
that the normalized maximum curvatures at points sampled in
our experiments do not exceed 6.5. Hence, the arm operates
safely within the bounds set by material failure considerations.

Next, we examine the restriction on the workspace imposed
by stability considerations in Eq. (20). Since tendon loadings are
non conservative, energy-based stability criteria do not apply.
We adopt a linearized dynamics stability criterion instead [31].
While this usually requires resolving a generalized eigenvalue
problem involving the mass and stiffness matrices, a simplifica-
tion is possible in our case. We exploit the fact that the finite
element mesh used is uniform and employ nodal mass lumping,
so that the mass matrix is reduced to a multiple of the identity.1
Hence the spectrum of the finite element stiffness matrix K(P)
is a direct indicator of stability. In particular, a set of real-valued
positive eigenvalues implies stability. Fig. 5b shows contours of
the smallest eigenvalue λmin(K(P)) of K(P) at each sample point
in Wsam

0 normalized by the factor B/ℓ. The stiffness matrix K(P)
is determined by consistently linearizing Eq. (9) and is in general

1 This simplification incurs a small error by doubling the nodal mass at the
tip of the arm. This can be crudely justified as a way of accounting for the pen
holder attached to the tip.

non symmetric. We use the SLEPc library [32] to compute its
spectrum. The smallest normalized value realized over all sample
points is≈ 1.8×10−3. The sensitivities α1,2(s; P) = ∂θ (s; P)/∂P1,2
provide an alternate way of inferring the absence of snap-through
instabilities, because they become unbounded at critical loads
[33,34]. Both α1 and α2 remain bounded at all sample points in
Wsam

0 .
Fig. 5c shows contours of the strain energy normalized by

the factor SE0 = B/2ℓ ≈ (1/6) J. We find that points sampled
in the experiments in Fig. 3 are bounded by the contour line
of value 18, implying that the energy required at any instant
during these experiments do not exceed 3 J. A small amount
of additional energy is required to overcome frictional losses at
the tip of the tracing pen. Fig. 5d shows level sets of the two
tendon loads normalized by the factor B/ℓ2. As expected, the
first cable attached closer to the clamped end requires higher
actuation forces than the second cable attached to the tip. We
observe from the figure that the maximum force required during
the experiments does not exceed 40 B/ℓ2 ≈ 22.2N. The torque
ratings of the motors used in our experiments are 35 kg-cm and
each tendon spool has a radius of 3.1 cm, resulting in a critical
load of Pcrit ≈ 112.9N. The tensions realized in the experiments
are hence much smaller than the critical capacities of the motors.

We conclude this discussion with a remark on the influence
of the material constitution of the arm on the extent of the
workspace. Criteria (21) and (22) involve the bending stiffness,
and hence the Young’s modulus of the material. Criterion (19)
introduces an independent material property, namely, the strain
(or stress) to failure. As a thought experiment, consider replacing
the material of the arm with a metal, say Aluminum, while
retaining all geometric dimensions unchanged. Note that the
non dimensionalized curvature strains, energies and tendon loads
plotted in Fig. 5 remain unchanged as well. The bending stiffness
of the metallic arm is larger by a factor of about 30 while the
strain to failure is smaller by a factor of about 10. Then, following
simple calculations analogous to the ones discussed above, we
find that the metallic arm would have in fact yielded and the
critical motor load exceeded during the course of performing the
experiments in Fig. 3.

4.4. Non intuitive operation

With possible application to precision surgical procedures in
mind, it is appealing to consider controlling the tendons operating
the elastica robot by hand instead of using motors. By leverag-
ing complex haptic and visual feedback, it may be possible to
effectively learn what Algorithm 1 accomplishes. Based on our
experience, however, this turns out to be a very challenging task.
We use the example in Fig. 3a to elucidate why.

Fig. 6a shows the tensions and cable lengths computed by
Algorithm 1 to trace each segment in Fig. 3a. We find that even
tracing straight segments requires nonlinear variations in cable
tensions and lengths. The large disparities in tensions required in
the two cables is also apparent, reflecting the differences in the
compliances of the arm at the points of actuation. Furthermore,
as indicated in Fig. 6b, the cables undergo significant orientation
changes during operation.

Fig. 6b additionally examines the sensitivity of the tip to the
tensions in the cables as it traces the specified shape. The blue
and orange arrows in the figure are scaled representations of
the vectors ∂xt/∂P1 and ∂xt/∂P2, respectively, computed using
Eq. (13). These vectors indicate how the tip responds to small
changes in cable tensions. The polar plot included in the figure
reveals that both magnitudes and orientations of tip sensitivities
change appreciably with tip location. The plot also shows that the
tip is roughly ten times more sensitive to the second cable than
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Fig. 5. Examining restrictions on the workspace based on strain, stability, energy and load considerations. Figures (a)–(d) show contours of non dimensionalized
variables over the sampling Wsam

0 of the workspace depicted in Fig. 4. The shapes traced during the experiments in Fig. 3 are superimposed in each plot.

Fig. 6. Referring to the example in Fig. 3a, (a) shows the non trivial variations in cable tensions and length required for tracing each section. Figure (b) illustrates
the sensitivity of the tip to the tension in each cable. Examining the curvature distribution in the arm in (c) categorically refutes the constant curvature assumption
that is commonly invoked in the literature.

it is to the first, again, reflecting the compliances at the points
of attachment of the two cables. In summary, the tip response to
cable tensions is highly configuration dependent, which makes
controlling it very non intuitive. This observation also explains
why Algorithm 1 cannot simply be replaced by a brute force
search for optimal cable tensions.

4.5. Observations

(i) We restrict the actuation in our examples to two tendons
because it is the minimum number required for the workspace
to have a finite area measure. Using additional tendons will likely
increase the extent of the workspace.
(ii) Values of the parameters s1,2 and r1,2 that define the details
of tendon loadings in the experimental setup are not particularly
special. Rather, they are chosen so that the arm is loaded along
independent directions by the two tendons. Level sets of the two
tendon loads shown in Fig. 5d demonstrate this point. For the
sake of brevity, we have not included experiments such as those
in Fig. 3 performed with alternate values of these parameters.
(iii) A useful consequence of controlling lengths in the experi-
ments is that it suffices to compute the ratios P1ℓ

2/B and P2ℓ
2/B

in Algorithm 1. Hence, we completely bypass the need to deter-
mine the bending stiffness of the arm.
(iv) Although Algorithm 1 controls the operation of the arm, the
examples in Fig. 3 in fact mainly serve to validate the model for
the direct problem in Eq. (8). This is because, by providing target
points that lie within the workspace and by using a tolerance
ε = 10−10 mm2 for detecting convergence of E, we ensure that
the tensions computed by Algorithm 1 position the tip within
10−5 mm of the desired location. Hence, the load optimization
algorithm does not introduce any meaningful error in the tip

position. Small deviations observed in the examples are instead
the cumulative result of errors in experiments and of assumptions
in the model for the direct problem.
(v) Good initial guesses for cable tensions in Algorithm 1 are
essential to ensure its convergence and to limit the number of
descent iterations required. In the examples in Fig. 3, we use
the tensions computed for a target point as the initial guess to
position the tip at the next location. With this approach, each
invocation of the algorithm typically requires fewer than 5 iter-
ations to converge. Executing a serialized implementation of the
algorithm on a desktop computer requires less than a second per
target point when using 180 elements to discretize the arm.
(vi) Since our model does not account for the inertia of the arm,
the experiments in Fig. 3 were performed sufficiently slowly.
With the motors operating at approximately 13 s/rev, Fig. 3a took
approximately 3 min to trace, while the curve in Fig. 3b took
about 9 min. These times correspond to tracing speeds of about
7.5mm/s and 5.6mm/s, respectively, for the two experiments.
At these low speeds, friction at the pen tip effectively damps out
small vibrations of the arm. We arrived at these tracing speeds by
trial and error. A more systematic procedure follows from using
eigenfrequencies to set upper bounds for tracing speeds. Fur-
thermore, since these frequencies are configuration dependent,
computing them can help to tune tracing speeds in an adaptive
manner.
(vii) The weight of the arm, the initial tension in the cables (just
taut condition) and friction between the pen tip and the drawing
sheet are important sources of error in our experiments that are
neither modeled nor measured. To reduce errors due to friction,
we allow the pen to slide freely within its holder so that the
normal force exerted by the pen on the sheet remains small and
approximately equal to the weight of the pen.
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Fig. 7. A stroboscopic image showing a buckling instability in the tendon-driven
elastic arm. At the critical state, the first tendon loads the arm while the second
is just taut. The straight section of the arm between the two attachment points is
aligned with the orientation of the second tendon. Engaging the second tendon
causes the straight section to buckle like an Euler column.

(viii) The geometric nature of the tip-control problem is made
conspicuous by the special case in which both tendons are at-
tached to the tip of the arm, i.e., the case s1 = s2. Then, the
optimal cable lengths (L1, L2) required to position the tip at xd
can be computed as the radii of a pair of circles centered at the
routing points r1 and r2 and intersecting at xd.

4.6. Load and length controlled systems

The interesting scenario, wherein calculations underlying Al-
gorithm 1 are load controlled, while their experimental realiza-
tions are length controlled, can be interpreted as an opportunistic
transformation of variables. To wit, formulating the equilibrium
equations in terms of cable lengths, though possible, is tedious.
In the same vein, cable lengths, rather than tensions, are easier
to control in our experiments.

Though convenient, this approach is not without caveats. No-
tably, it is not straightforward to relate instabilities possible in the
load and length controlled settings. Our load controlled numeri-
cal simulations reveal the existence of numerous snap through
instabilities when the tip of the arm is located in the half-plane
y < 0. However, these are generally not realizable in length con-
trolled experiments, presumably due to the one-sided kinematic
constraints

∥xi − ri∥ ≤ ℓi for i = 1, 2, (23)

imposed by the inextensibilities of the two tendons. In particu-
lar, admissible perturbations in the length controlled setting are
required to satisfy Eq. (23), while those in the load controlled
setting do not. Nevertheless, instabilities are possible with length
control as well— Fig. 7 shows an example of a buckling instability.
At the critical state, the first tendon loads the arm and the second
tendon is just taut. The section of the arm between the two
attachment points x1 and x2 is nominally straight, and crucially,
aligned with the orientation of the second tendon. Engaging the
second tendon, by reducing its length by a few millimeters while
leaving the length of the first tendon unchanged, compresses the
straight section of the arm like an Euler column and causes it to
buckle to one of two states.

Distinctions between load and length controlled deforma-
tions also manifest when examining solution multiplicity. Fig. 8
shows three equilibrium configurations labeled as states 1, 2
and 3. States 1 and 2 have identical cable lengths (L1, L2) =
(147.1, 472.5)mm, while states 1 and 3 have identical cable

Fig. 8. An example demonstrating the possibility of solution multiplicity in load
and length controlled settings. States 1 and 2 have identical cable lengths while
states 1 and 3 have identical cable tensions.

tensions (P1ℓ
2/B, P2ℓ

2/B) = (25.2, 10.8). In particular, neither of
the cable lengths (96.2, 454.3)mm in state 3 equal that of state
1, and neither of the cable tensions (9.7, 12.6) in state 2 equal
that of state 1.

Examining states 1 and 2 in Fig. 8 highlights an interesting
feature. Starting from state 1, searching for an alternate equilib-
rium configuration satisfying the same tendon lengths requires
the attachment point x1 to lie on a circle of radius L1 = 147.1mm
centered at r1, and the tip x2 to lie on a circle of radius L2 =
472.5mm centered at r2. These circles are indicated by dashed
lines in the figure. The two conditions impose severe kinematic
constraints on state 2. For this reason, it is not possible to switch
between states 1 to 2 using small or random perturbations. In-
stead, it is necessary to either add large perturbations to slacken
both tendons and bias the arm towards the desired solution, or
follow different loading sequences. Observe that the arm conve-
niently satisfies one of the two constraints in state 2, namely
L1 = 147.1mm, by remaining unmoved from its location in
state 1.

5. Concluding remarks

Using simple ideas from structural mechanics and optimiza-
tion, we have demonstrated that it is possible to accurately posi-
tion the tip of a flexible arm by manipulating it in non-intuitive
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ways using a pair of tendons attached to its centerline. Compared
to approaches prevalent in soft robotics, we exploit structural
slenderness rather than a complex material response to achieve
a high degree of controlled deformability. The resulting robot
promises to be a useful device, besides adding to a growing list
of applications based on the elastica model [16,33,35–37].

Our work suggests a number of directions for further in-
vestigation. The problem of a tendon-actuated elastica shows
a diverse range of features (solution multiplicity, instabilities,
configurational forces) and is an interesting system to study in its
own right. Stability analysis of an elastica subject to cable length
constraints appears to be a challenging problem, and may require
techniques different from those used with load or displacement
control [38]. Extensions of our work by combining tip control
with shape control of the arm [26], permitting nonlinear material
behavior, coupling actuation with energy recovery mechanisms,
and generalization to the case of manipulating three-dimensional
rods with general tendon routings will make the use of flexible
elements more appealing in a wider range of applications. It is
imperative to develop tools that will help to quantify workspaces
of flexible robots [39]. Brute-force sampling techniques, such
as the one we have used here, do not provide insights on the
influence of various design parameters on the workspace. It also
remains to be seen whether our approach can be extended to
include dynamic effects.
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