
Received: 3 May 2018 Revised: 30 August 2018 Accepted: 23 September 2018

DOI: 10.1002/nme.5960

R E S E A R C H A R T I C L E

A shape optimization approach for simulating contact of
elastic membranes with rigid obstacles

Akriti Sharma Ramsharan Rangarajan

Department of Mechanical Engineering,
Indian Institute of Science Bangalore,
Bengaluru, India

Correspondence
Ramsharan Rangarajan, Department of
Mechanical Engineering, Indian Institute
of Science Bangalore, Bengaluru-560 012,
India.
Email: rram@iisc.ac.in

Funding information
Science and Engineering Research Board,
Grant/Award Number: ECR/2017/000346

Summary

The obstacle problem consists in computing equilibrium shapes of elastic mem-
branes in contact with rigid obstacles. In addition to the displacement u of the
membrane, the interface Γ on the membrane demarcating the region in con-
tact with the obstacle is also an unknown and plays the role of a free boundary.
Numerical methods that simulate obstacle problems as variational inequalities
share the unifying feature of first computing membrane displacements and then
deducing the location of the free boundary a posteriori. We present a shape
optimization-based approach here that inverts this paradigm by considering the
free boundary to be the primary unknown and compute it as the minimizer of
a certain shape functional using a gradient descent algorithm. In a nutshell, we
compute Γ then u, and not u then Γ. Our approach proffers clear algorithmic
advantages. Unilateral contact constraints on displacements, which render tra-
ditional approaches into expensive quadratic programs, appear only as Dirichlet
boundary conditions along the free boundary. Displacements of the membrane
need to be approximated only over the noncoincidence set, thereby rendering
smaller discrete problems to be resolved. The issue of suboptimal convergence of
finite element solutions stemming from the reduced regularity of displacements
across the free boundary is naturally circumvented. Most importantly perhaps,
our numerical experiments reveal that the free boundary can be approximated
to within distances that are two orders of magnitude smaller than the mesh size
used for spatial discretization. The success of the proposed algorithm relies on
a confluence of factors- choosing a suitable shape functional, representing free
boundary iterates with smooth implicit functions, an ansatz for the velocity of
the free boundary that helps realize a gradient descent scheme and triangulat-
ing evolving domains with universal meshes. We discuss these aspects in detail
and present numerous examples examining the performance of the algorithm.

KEYWORDS

gradient descent, free boundary, obstacle problem, shape functional, universal meshes, variational
inequalities

Int J Numer Methods Eng. 2019;117:371–404. wileyonlinelibrary.com/journal/nme © 2018 John Wiley & Sons, Ltd. 371

https://doi.org/10.1002/nme.5960
http://orcid.org/0000-0001-7403-7728
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.5960&domain=pdf&date_stamp=2018-11-08

372 SHARMA AND RANGARAJAN

1 INTRODUCTION

The obstacle problem consists in computing the deformation of a thin elastic membrane subject to external loads and a
frictionless unilateral contact constraint. Figure 1 provides a conceptual illustration of the problem, where the reference
configuration of the membrane is the planar domain Ω. The membrane is clamped along its periphery and is loaded
by an external force f. The presence of an obstacle is conveyed by the height function 𝜓 . Denoting the deflection of the
membrane by u, the obstacle problem seeks an equilibrium configuration of the membrane while satisfying the contact
constraint that u ≤ 𝜓 on Ω.

The obstacle problem represents one of the simplest unilateral contact problems in classical linear elasticity. The ansatz
that the potential energy of a deformed membrane depends on the change in its area immediately reveals its close connec-
tion with problems of minimal surfaces. Its historical significance is also evidenced by the fact that it serves as a model for
studying variational inequalities and free boundary problems.1-3 In an engineering context, various applications related to
casting, solidification, electrochemical shaping, phase transformations (Stefan problems), Hele-Shaw flows, the famous
dam problem, and even certain pricing models in finance can be interpreted and resolved as obstacle problems following
a suitable transformation of the unknowns.4-6

The motivation behind the algorithm we propose here for numerically simulating the obstacle problem stems from the
observation that, in addition to the membrane deflection u, the set of points where the membrane makes contact with
the obstacle, ie, the coincidence set C ⊂ Ω, is not known a priori and must be determined as part of the solution. The
coincidence set and its boundary Γ have clear physical interpretations in obstacle problems and it is therefore imperative
to compute these sets accurately. In such a context, we highlight that an essential feature of the proposed algorithm is
that it considers the location of the free boundary to be the primary unknown. In particular, the coincidence set is not
inferred from the deflection of the membrane as is commonly done in existing algorithms. Instead, we directly compute
Γ as the minimizer of a certain shape functional. Such an approach has clear algorithmic advantages, some of which we
mention in the ensuing discussions and subsequently alongside numerical experiments presented in Section 5.

Finite element methods for resolving obstacle problems predominantly rely on interpreting it as a variational inequality
posed on a Hilbert space (the Sobolev space H1

0(Ω)), or equivalently, as a problem of constrained energy minimization.7

Throughout our presentation, we shall assume that the potential energy of an elastic membrane is given by the Dirichlet
functional of its deflection. While this amounts to replacing the area measure of the deformed membrane by a linearized
version, the problem remains nonlinear owing to the unilateral constraint. The set of admissible solutions K ⊂ H1

0(Ω)
is convex and the deflection u is endowed with a geometric characterization* as a projection onto K.2 Well-posedness of
finite element approximations of the obstacle problem also generally follow for the same reason, with the set of admissible
solutions Kh being a convex subset of the finite element space Vh ⊂ H1

0(Ω), where h denotes the mesh size parameter.
One of the main challenges in designing finite element methods for the obstacle problem lies in how the set of

admissible functions is restricted to satisfy the contact constraint, ie, in constructing the subset Kh of Vh. Invariably,
this requires constraining nodal degrees of freedom of finite element functions by imposing constraints of the form
uh(xa) ≤ 𝜓(xa), 1 ≤ a ≤ n, where uh ∈ Vh and {xa}n

a=1 are the locations of the finite element nodes. The resulting
discrete problem for computing uh is an expensive quadratic program, ie, minimize a quadratic energy functional while
satisfying linear inequality constraints. We also recognize that such methods are in general nonconforming because func-
tions in Kh only satisfy the contact constraint at a prescribed set of points (nodes). More specifically, Kh ⊄ K, which can
be interpreted as replacing the obstacle with a perturbed one in the discrete problem. Nevertheless, thanks to the stabil-
ity of the solution u to the problem data (external forces, boundary conditions, and obstacles), such variational crimes do
not generally hinder convergence of the discrete solution uh to u with mesh refinement.9

Penalty and duality formulations of the obstacle problem are notable alternatives that simplify the inclusion of contact
constraints. In the former, the set of admissible solutions is the unconstrained linear space Vh, but deviations of candidate
solutions from the contact constraint are penalized by a suitable modification of the energy functional.10-12 Convergence
analyses of such methods reveal that the penalty parameter should scale as the inverse square of the mesh size. Large
values of penalty parameters prevent penetration of the membrane into the obstacle, but also makes the conditioning of the
resulting linear system that needs to be resolved progressively poorer. In dual formulations, on the other hand, Lagrange
multipliers serve to impose the unilateral constraint and the resulting saddle point problem can be discretized and resolved
with mixed finite element methods.13,14 The multiplier field has the useful interpretation of being the traction exerted by

*In comparison, the solution of the analogous variational equality is interpreted as a projection onto a subspace of admissible solutions (Lax-Milgram
theorem8).

SHARMA AND RANGARAJAN 373

obstacle

membrane

coincidence set

free boundary

noncoincidence set

FIGURE 1 An illustration of the obstacle problem. A flat elastic membrane Ω is clamped along its periphery and subjected to a load
distribution f . The membrane is constrained to remain below a rigid obstacle having a height function 𝜓 . As indicated in the picture on the
right, the coincidence set C is the collection of points where the membrane makes contact with the obstacle. Its boundary is denoted by Γ.
The complement of C is the noncoincidence set D. Both the displacement of the membrane and the free boundary location are unknowns
[Colour figure can be viewed at wileyonlinelibrary.com]

the obstacle on the membrane. In this context, we mention that augmented Lagrangian methods inherit the benefits of
both penalty and dual formulations, while additionally permitting the penalty parameter to remain bounded.15,16

Irrespective of the specific formulation employed, a common feature of the methods we have mentioned is that the
deflection of the membrane serves as the principal unknown. This choice poses important difficulties in practice. First,
the regularity of u is limited by the contact condition irrespective of the smoothness of the problem data,17,18 which stands
in clear contrast to the case of variational equalities, where the regularity of the solution is generally commensurate
with that of the problem data. In particular, the curvature of the membrane is discontinuous across the free boundary
regardless of the smoothness of the obstacle and u ∈ H2(Ω) at best. As a consequence, while linear finite elements yield
optimal convergence for membrane displacements (in the energy norm for instance), the approximation is suboptimal
even with quadratic elements.19,20 For this reason, primal finite element methods are invariably limited to piecewise lin-
ear polynomial basis functions. Similar remarks also apply to the case of approximation with mixed methods for dual
formulations.13 Consequently, the accuracy of discrete solutions {uh}h to the obstacle problem relies on mesh refine-
ment in an essential way and adaptive refinement strategies based on a posteriori error estimators specifically designed
for obstacle problems are crucial in practice.21,22 It is also possible to devise postprocessing techniques with subgrid
scale calculations to improve the accuracy of the solution; see Lee et al23 for such ideas albeit in the setting of finite
difference methods.

A second consequence of resolving the obstacle problem by considering the membrane deflection to be the primary
unknown concerns identifying the coincidence set. The issue here is that it is possible to make small changes to the
obstacle that results in large changes in the coincidence set and the free boundary. This observation is indicative of an
issue of stability of the free boundary in the continuous problem. The well-known minimum speed criterion, which is
a nondegeneracy condition, addresses this. It is, of course, our intention to only consider obstacle problems that are
well-posed with the pairing (u,Γ) considered as the unknown. Nevertheless, subtle questions remain when computing
the coincidence set and the free boundary a posteriori from the deflection of the membrane, starting with the fact that
the nondegeneracy condition is, in general, not satisfied by finite element approximations uh of the membrane deflection
even if it holds for the exact solution u. Specifically, it is possible to have an arbitrarily close approximation uh of u, and
yet to not be able to infer much about the location of the free boundary Γ. A one-dimensional example illustrating this
point can be found in the work of Brezzi.24 One of the key points revealed by the analysis in Brezzi25 and Nochetto26 is that
it is not just convenient but, in fact, imperative to introduce tolerances when identifying the approximate coincidence set
Ch and the approximate free boundary Γh from the finite element solution uh. The choice of these tolerances is intimately
related to error estimates for (u − uh) and to the minimum speed criterion satisfied by u. As astutely noted in Brezzi24

however, the error in the free boundary measured as a distance “cannot beat the mesh size” despite these estimates. Here
again, adaptive mesh refinement is essential for improving the approximation of the free boundary, so that the error in
Γh is limited by the local mesh size. Notably, such mesh refinement is required irrespective of the geometric features of
the free boundary.

In light of these discussions, the shape optimization-based approach we propose here with Γ being the principal
unknown provides an attractive alternative for resolving obstacle problems. This idea is reinforced by the qualitative
observation that, unlike the membrane deflection, the free boundary is expected to be as regular as the problem data.27-29

http://wileyonlinelibrary.com

374 SHARMA AND RANGARAJAN

It is also not surprising that the free boundary could be optimal in some sense. Roughly speaking, the deflection u satisfies
a Poisson problem governing static equilibrium of the membrane over the noncoincidence set D= Ω⧵C, and the Cauchy
data u = 𝜓,∇u = ∇𝜓 represent over specified boundary conditions along Γ. The location of the free boundary is such
that this problem on D has a solution. This feature of having overspecified data along the free boundary is typical in free
boundary problems in general, and especially of Bernoulli-type free boundary problems.30,31

Central to the success of a shape optimization approach for computing the free boundary is identifying a suitable
domain/shape functional for which Γ serves as the minimizing element. This question is rather nontrivial. In Section 2,
we demonstrate using simple examples that seemingly natural choices for domain functionals may have multiple sta-
tionary points or an inflection at the correct solution and are therefore unsuitable in practice. Our choice for the domain
functional, which we label as J𝜏 , is based on the work in Bogomolny and Hou.32 They show that certain conditions on
the problem data, which are not overly restrictive, suffice to guarantee that Γ is the unique minimizer of J𝜏 . The shape
derivative of J𝜏 is straightforward to evaluate and furnishes an evolution “velocity” for the free boundary, which, in turn,
serves as the basis for a gradient descent algorithm discussed in Section 3. Hence, we start with an initial guess for the free
boundary, compute the membrane deflection and adjoint variables over the noncoincidence set using a standard finite
element method, use these fields to evaluate the velocity of the free boundary, and advect the free boundary to the next
guess while using a sufficiently small time step. This procedure, which constitutes one iteration, is repeated until the free
boundary is deemed to have converged in some sense. Notice that at each iteration in this scheme, the deflection of the
membrane is approximated over a domain defined by a guess for the free boundary. Such a paradigm is in stark contrast
with the aforementioned algorithms that estimate the location of the free boundary from the computed deflection of the
membrane. In Sections 3 and 5, we discuss in detail some of the algorithmic advantages of the proposed shape optimiza-
tion based scheme. For now, we highlight that finite element solutions need only be computed over the noncoincidence
set at each iteration, and in particular, not over the entire domain Ω. Besides the obvious benefit of having to resolve dis-
crete problems with fewer degrees of freedom, we conspicuously avoid the detrimental effects of the lack of regularity
of u along the free boundary. By virtue of the free boundary being the primary unknown, the contact condition that the
deflection of the membrane equal the height of the obstacle over the coincidence set is automatically imposed without
the need for any inequality constraints. Indeed, the unilateral constraint only manifests as a Dirichlet boundary condition
for the linear problem being resolved over the noncoincidence set.

Evidently, the proposed algorithm entails computing finite element approximations of membrane displacement and its
adjoint over noncoincidence sets, which necessarily evolve with the free boundary iterates. Hence, computing a sequence
of approximations {Γk}k, k = 1, 2, … for the free boundary requires resolving Poisson problems over a correspond-
ing sequence of noncoincidence sets {Dk}k. Such a scenario is naturally expected when simulating shape optimization
problems, and we encounter the familiar challenge of how to discretize domains {Dk}k that may change drastically with
each iteration. To this end, we adopt the idea of universal meshes introduced in Rangarajan and Lew33 for such problems
involving moving boundaries and evolving domains. In a nutshell, we consider a fixed triangulation over Ω as a uni-
versal mesh for the entire sequence of noncoincidence sets {Dk}k realized in the shape optimization scheme. At the kth
iteration, the current guess for the free boundary Γk is immersed in the universal mesh and a specific collection of its ele-
ments are mapped onto a conforming mesh over Dk. Details of this simple meshing algorithm are discussed and analyzed
in Rangarajan and Lew.34,35 We include a terse outline of the steps involved in Section 4. We note that, unlike arbitrary
Lagrangian-Eulerian methods, universal meshes permit large motions of the free boundary, and by virtue of preserving
element connectivities, enable retaining sparsity patterns of finite element data structures throughout the course of a
simulation.

An important detail that arises when directly computing the free boundary concerns its representation. Since the free
boundary can undergo dramatic shape changes during the course of a simulation, as will be evident in the numerical
examples presented in Section 5, adopting a parametric representation is ill advised. Indeed, it becomes necessary to
periodically reparameterize free boundary iterates to account for evolving curvatures and other geometric features. For
this reason, we adopt an implicit representation instead, by defining the location of the free boundary as the zero level
set of a function. While an implicit representation is not a requirement in the proposed algorithm, it is certainly con-
venient. Alternate boundary representations, including parametric representations as splines, can be used as well. We
recognize that the application of level set methods to resolving obstacle problems,36 and more generally to problems of
shape optimization37-39 is not new. However, besides the use of an implicit representation, little else is common between
our approach and level set methods.

We caution that the shape optimization problem we consider here is not a design problem involving contact constraints.
Our goal is to compute the deflection and the coincidence set for a membrane in contact with an obstacle. It is not, for

SHARMA AND RANGARAJAN 375

instance, to optimize the contact pressure or the area of contact.40,41 Similarly, it is not a problem of optimizing the domain
shape/topology to extremize energy functionals arising in contact problems.42 Nevertheless, a majority of the algorithmic
ideas we introduce or adopt here apply verbatim to resolving such design-related problems as well.

We remark that it may be possible to exploit the ideas introduced here to simulate the mechanics of biological
membranes.43,44 In particular, a broad range of applications related to targeted drug delivery require a detailed understand-
ing of the mechanics of contact between nanoparticles and lipid vesicles or cell membranes.45-47 The region of contact
is the location of chemical interactions between ligand molecules and receptors, and therefore plays a decisive role.48

Compared with the obstacle problem we study here, the mechanics of contact interactions in biomembranes requires
accounting for the curvature-dependent bending elasticity of the membrane49 as well as adhesion between the membrane
and the particle.50,51 While the idea of directly computing the contact region in such problems is appealing, the extension
of our approach to these problems is likely to be nontrivial.

Organization: We begin in Section 2 with a discussion of the choice of the shape functional for which the free boundary
serves as a minimizer. With the aid of simple axisymmetric examples, we demonstrate that seemingly natural choices are
ill suited for our purposes. We then define the functional J𝜏 adopted in all our numerical experiments. With the shape
functional at hand, we introduce an iterative gradient descent algorithm for computing the free boundary in Section 3.
Therein, we discuss the representation adopted for free boundary iterates using implicit functions, computing the sen-
sitivity of the objective functional to identify descent directions and provide a backtracking algorithm that ensures a
monotonically decreasing sequence of functional values. We briefly discuss meshing noncoincidence sets defined by the
evolving free boundary using universal meshes in Section 4, which enables us to compute finite element approximations
of the membrane displacement and the adjoint variable. We present a series of numerical experiments in Section 5 which
are aimed at examining the performance of the proposed algorithm, demonstrating its convergence properties, and quan-
tifying the accuracy of the computed free boundary and membrane displacements. In Section 5.4.1, we also compare our
algorithm with a variational inequality solution. Following a few concluding remarks in Section 6, we provide a detailed
derivation of the sensitivity of the objective functional J𝜏 in the Appendix.

2 CHOOSING A SHAPE FUNCTIONAL

Descriptions of the obstacle problem as a variational inequality or as a problem of constrained energy minimization are
well known.3,7 Our goal in this section is to motivate the choice of a domain functional of which the free boundary is a
minimizer. Using examples of a circular membrane in contact with axisymmetric obstacles, we discount a couple of seem-
ingly natural choices. We then introduce the functional adopted in the proposed algorithm. Throughout our discussions,
we omit qualifying the requisite smoothness of the problem data, preferring instead to assume sufficient regularity.

2.1 The free boundary problem
Referring to Figure 1, we consider an elastic membrane having a reference configuration Ω ⊂ R2 that is clamped along
the boundary 𝜕Ω. The membrane is loaded by a force 𝑓 ∶ Ω → R and is constrained to lie below an obstacle having a
height function 𝜓 ∶ Ω → R, resulting in a deflection u ∶ Ω → R measured normal to the plane of Ω. The set of points in
Ω where the membrane makes contact with the obstacle is the coincidence set

C ≜ {x ∈ Ω ∶ u(x) = 𝜓(x)}.

The complementary part of the membrane is the noncoincidence set D ≜ Ω⧵C and the free boundary is the setΓ ≜ 𝜕D ∩ Ω.
The conditions for static equilibrium of the membrane are summarized as3

−Δu = 𝑓 on D, (1a)

u = 0 on 𝜕Ω, (1b)

u = 𝜓 on C (and Γ in particular), (1c)

𝜕u∕𝜕n = 𝜕𝜓∕𝜕n on Γ, (1d)

376 SHARMA AND RANGARAJAN

where n denotes the unit normal to Γ pointing away from D. Equation (1a) represents a balance between the tension in
the membrane and the external loading over the region where the membrane does not make contact with the obstacle.
Over the coincidence set C, the deflection simply satisfies u = 𝜓 . A homogeneous Dirichlet boundary condition along
𝜕Ω is given by Equation (1b), while Equations (1c) and (1d) represent transmission conditions along the free boundary.
The overspecified boundary conditions along Γ serve as a reminder that it is also an unknown in Equation (1), ie, that Γ
is a free boundary. We shall assume that 𝜓 > 0 over 𝜕Ω, so that C and Γ are compactly contained in Ω.

2.2 Axisymmetric problems: exact solutions
In the ensuing discussions, we will use the example of a circular membrane in contact with an axisymmetric obstacle to
examine different choices for the shape functional. We set Ω to be a circular membrane of radius R centered at the origin
of coordinates and assume that the obstacle is centered above the origin and has a height function 𝜓(r). For simplicity,
we set the forcing f to be a constant. It is then straightforward to verify that a solution to the obstacle problem satisfying
all the conditions in Equation (1) is given by

u(r) =

{
𝜓(r) for r ≤ RΓ,

−𝑓 r2∕4 + 𝛼 log r + 𝛽 for RΓ ≤ r ≤ R,
(2)

where the parameters (𝛼, 𝛽,RΓ) constitute a solution to the algebraic system of equations

−𝑓R2∕4 + 𝛼 log R + 𝛽 = 0,
−𝑓R2

Γ∕4 + 𝛼 log RΓ + 𝛽 = 𝜓(RΓ),
−𝑓RΓ∕2 + 𝛼∕RΓ = 𝜓 ′(RΓ),

(3)

and Γ coincides with the boundary of the circle having radius RΓ and centered at the origin.
For the specific example of a flat obstacle positioned parallel to the plane of Ω and at a height Z above the origin, the

height function is 𝜓(r) = Z. Then, we find that

R = 1
Z = 𝑓

(
1 − 3e−2) ∕4

𝜓(r) = Z

}
⇒ 𝛼 = 𝑓e−2∕2, 𝛽 = 𝑓∕4,RΓ = e−1. (4)

Similarly, for a spherical obstacle having radius 𝜌 and centered at a height Z above the origin, the height function is given
by 𝜓(r) = Z −

√
𝜌2 − r2, and we find that

R = 1
𝜌 =

√
10e−1

Z = 1∕4 + 8e−1∕3 − 3e−2∕4
𝜓(r) = Z −

√
𝜌2 − r2

⎫⎪⎬⎪⎭ ⇒ 𝛼 = e−1∕3 + e−2∕2, 𝛽 = 1∕4,RΓ = e−1. (5)

Moreover, the parameters (𝛼, 𝛽,RΓ) in Equations (4) and (5) are unique solutions to the respective realizations of
Equation (3). The solution r → u(r) and its derivatives are plotted in Figures 2A to 2C for the case of the flat obstacle, and
in Figures 3A to 3C for the case of the spherical obstacle. While continuity of u′ confirms that Equation (1d) is satisfied at
the free boundary r = RΓ, the kink in the profile of u′ and the jump in u′′ at the free boundary indicates the discontinuity
in the curvature of the membrane across the contact interface.

2.3 A functional with an inflection point
We use the examples in Equations (4) and (5) to examine the behavior of a few different shape functionals for the free
boundary. We exploit the symmetry in these examples to restrict the set of admissible shapes of free boundaries to be
circular and concentric withΩ. In this way, each admissible candidateΓ𝜂 for the free boundary is associated with the scalar
parameter 𝜂 denoting its radius. Consequently, shape functionals of the free boundary are transformed into functions of 𝜂.

SHARMA AND RANGARAJAN 377

 0

 0.04

 0.08

 0.12

 0.16

 0 0.2 0.4 0.6 0.8 1

Obstacle

(A)

-0.4

-0.3

-0.2

-0.1

 0

 0 0.2 0.4 0.6 0.8 1

(B)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 0.2 0.4 0.6 0.8 1

(C)

-0.2

-0.16

-0.12

-0.08

 0 0.2 0.4 0.6 0.8
 0

 0.4

 0.8

 1.2

 0 0.2 0.4 0.6 0.8

(D)

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8

(E)

FIGURE 2 The axisymmetric solution r → u(r) to the problem of a circular membrane loaded by a constant force and in contact with a flat
obstacle is plotted in figure (A), and its derivatives are shown in (B) and (C). Details of the problem parameters and the solution are given in
Equation (4). The continuity of u′ at 𝜂 = RΓ verifies that the condition 𝜕u∕𝜕n = 𝜕𝜓∕𝜕n is satisfied. The jump in u′′ is indicative of the
discontinuity in curvature across the contact interface. Figures (D) and (E) show the dependence of the functionals J0 and  and their
derivatives on the free boundary radius 𝜂. Both functionals have a stationary point at the correct free boundary radius, which is highlighted
with a circular marker. However, the correct solution occurs at an inflection point of the functional J0, while the functional  has a second
stationary point. These features render J0 and  unsuitable for simulating the obstacle problem

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

 Obstacle

(A)

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1

(B)

-2

-1

 0

 1

 0 0.2 0.4 0.6 0.8 1

(C)

 0

 0.8

 0 0.2 0.4 0.6 0.8
 0

 8

 16

 0 0.2 0.4 0.6 0.8

(D)

 0

 0.4

 0.8

 0 0.2 0.4 0.6 0.8

 0

 2

 4

 0 0.2 0.4 0.6 0.8

(E)

FIGURE 3 The solution u(r) and its derivatives to the problem of a loaded circular membrane in contact with a spherical obstacle are
shown in (A), (B), and (C); see Equation (5). The dependence of the functionals J0 and  on the free boundary radius 𝜂 are shown in (D) and
(E). The observations made in Figure 2 for the case of the flat obstacle are reflected here as well. The correct solution 𝜂 = RΓ is an inflection
point of J0, while  has multiple stationary points

A guiding principle for posing Equation (1) as a shape optimization problem for the free boundary lies in enforcing one
of the two constraints imposed on Γ in Equations (1c) and (1d) through a shape functional. A natural choice is furnished

378 SHARMA AND RANGARAJAN

by the observation that

u = argmin
v∈K

E[v], where E[v] = 1
2 ∫

Ω

∇v · ∇v − ∫
Ω

𝑓v and K =
{

v ∈ H1
0(Ω) ∶ v ≤ 𝜓

}
,

leading us to consider the shape functional

J0[𝜂] ≜ E[u𝜂] where
⎧⎪⎨⎪⎩
−Δu𝜂 = 𝑓 on D𝜂 = {x ∈ Ω ∶ 𝜂 < ||x|| < R} ,
u𝜂 = 0 on 𝜕Ω,
u𝜂 = 𝜓 on C𝜂 = {x ∈ Ω ∶ ||x|| ≤ 𝜂} ,

(6)

and ||x|| denotes the Euclidean norm of x ∈ R2. In Equation (6), notice that we have omitted the condition 𝜕u𝜂∕𝜕n =
𝜕𝜓∕𝜕n along Γ𝜂; it will instead be enforced automatically at the optimal radius determined by extremizing J0. For the
example of the flat obstacle with parameters R,Z, 𝜓(r)noted in Equation (4), the membrane deflection u𝜂(r) parameterized
by the free boundary radius 𝜂 ∈ (0, 1) is given by

u𝜂(r) =
1
4

(
(1 − r2) +

(
𝜂2 − 3e−2) log r

log 𝜂

)
, (7)

while for the example of the spherical obstacle in Equation (5), the solution u𝜂 follows as:

u𝜂(r) =
1
4
(1 − r2) +

log r
4 log 𝜂

(
𝜂2 + 32

3
e−1 − 3e−2 − 4

√
10e−2 − 𝜂2

)
. (8)

Inspecting the plots of 𝜂 → J0[𝜂] in Figures 2D and 3D, we find that J0 indeed has a stationary point at 𝜂 = RΓ, ie,
J′0[RΓ] = 0. When computing the shape derivative of J0 in Section 3.3, we will see that this observation is not a coincidence,
ie, the exact solution for the free boundary is necessarily a stationary point of J0 and the transmission condition 𝜕u𝜂∕𝜕n =
𝜕𝜓∕𝜕n is enforced at 𝜂 = RΓ. Unfortunately, the correct solution happens to be a point of inflection of J0, which is
evident from the fact that J′0[𝜂] is positive on either side of 𝜂 = RΓ. We conclude therefore that we cannot expect Γ to be
a minimizer of J0 in general.

2.4 A functional with multiple stationary points
An alternative to J0 is the choice

[𝜂] ≜ ∫
Γ𝜂

(u𝜂 − 𝜓)2 dΓ where
⎧⎪⎨⎪⎩
−Δu𝜂 = 𝑓 on D𝜂,

u𝜂 = 0 on 𝜕Ω,
𝜕u𝜂∕𝜕n = 𝜕𝜓∕𝜕n on Γ𝜂.

(9)

In contrast to Equation (6), the state u𝜂 in Equation (9) satisfies the flux condition Equation (1d) by definition while
the constraint u𝜂 = 𝜓 on Γ𝜂 in Equation (1c) is enforced in a least-squares sense by the functional . Here again,
the 1-parameter family of solutions r → u𝜂(r) is straightforward to compute for each 𝜂 ∈ (0, 1) for the examples in
Equations (4) and (5). The solution in the case of the flat obstacle with parameters (R,Z, 𝜓) given in Equation (4) is

u𝜂(r) =
1
4
(
−r2 + 2𝜂2 log(r) + 1

)
,

while for the case of the spherical obstacle with parameters (R, 𝜌,Z, 𝜓) in Equation (5) is

u𝜂(r) =
1
4
(
1 − r2) + 𝜂2 log r

(1
2
+

(
10e−2 − 𝜂2)−1∕2

)
.

Figures 2E and 3E inspect the dependence of  and its derivative on the free boundary radius 𝜂. As we did in the case of J0,
we find that  has a stationary point at the correct free boundary radius 𝜂 = RΓ. It can also be verified that u𝜂(𝜂) = 𝜓(𝜂)
at 𝜂 = RΓ, so that Equation (1c) is satisfied as well. However, we find that 𝜂 → [𝜂] has multiple stationary points both
in the case of the flat and the spherical obstacle.

SHARMA AND RANGARAJAN 379

2.5 Our choice: the functional J𝝉 with 𝝉 ≥ 1
The qualitative features of J0 and  revealed with the aid of simple examples serves as a reminder that choosing a shape
functional for computing the free boundary in the obstacle problem is a rather nontrivial task. The functional J𝜏 that
we adopt is proposed in Bogomolny and Hou.32 Denoting an admissible solution to the free boundary by 𝛾 and the
corresponding membrane deflection by u𝛾 , we consider

C𝛾 and D𝛾 are the coincidence and noncoincidence sets corresponding to 𝛾 . The rationale for choosing J𝜏 comes from
the analysis in the work of Bogomolny and Hou,32 where it is proven to have a unique minimizer at the exact solution
provided that some sufficient conditions on the problem data hold. Evidently, J0 coincides with J𝜏 for the choice 𝜏 = 0.
However, we shall expressly require that 𝜏 ≥ 1 and note that the claims on properties of J𝜏 for 𝜏 ≥ 1 do not generally
extend to the choice 𝜏 = 0.

Let us examine J𝜏 using the axisymmetric examples introduced in Section 2.2. To this end, we identify 𝛾 with Γ𝜂 ,J𝜏[𝛾]
with J𝜏[Γ𝜂] and u𝛾 with u𝜂 in Equation (10). Then, the solutions u𝜂(r) parameterized by the free boundary radius 𝜂 are
identical to the states computed in Equations (7) and (8) for the examples of the flat and spherical obstacles with param-
eters defined in Equations (4) and (5). Figure 4 shows plots of 𝜂 → J𝜏[𝜂] for a few representative values of 𝜏 ≥ 1. We
find that irrespective of the value of 𝜏 chosen, J𝜏 has a unique stationary point at 𝜂 = RΓ and that the stationary point is
in fact a minimum. The shape sensitivity calculations in Section 3.3 will reveal that the flux condition in Equation (1d)
is automatically satisfied at 𝜂 = RΓ. These features of J𝜏 make it an ideal choice for our purpose of computing the free
boundary for the obstacle problem.

The key assumptions considered in Theorem 4.7 in Bogomolny and Hou32 to guarantee a unique minimizer for J𝜏 at
the free boundary are the conditions

−Δ𝜓 + (2𝜏 − 1)𝑓 ≥ 0 on Ω, provided 𝑓 ≥ 0. (11a)

−Δ𝜓 − 𝑓 ≠ 0 in any open set in Ω. (11b)

These restrictions on the problem data are only sufficient conditions, not necessary ones. Condition (11a) is helpful in
choosing the parameter 𝜏 in the shape functional. Condition (11b) is invoked to infer that a minimizing sequence of J𝜏 is

 0.1

 0.18

 0.26

 0 0.2 0.4 0.6 0.8
-1

 0

 1

 2

 0 0.2 0.4 0.6 0.8

(A)

 2.7

 3.1

 3.5

 0 0.2 0.4 0.6 0.8
-8

-4

 0

 4

 0 0.2 0.4 0.6 0.8

(B)

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8
-20

 0

 20

 0 0.2 0.4 0.6 0.8

(C)

 10

 20

 30

 40

 0 0.2 0.4 0.6 0.8

-200

-100

 0

 100

 0 0.2 0.4 0.6 0.8

(D)

FIGURE 4 Plots showing the dependence of the shape functional J𝜏 [𝜂] on the free boundary radius 𝜂 in the case of the flat and spherical
obstacles for a few different values of the parameter 𝜏 ≥ 1. We find in each of the four examples considered in (A) to (D) that the correct free
boundary radius 𝜂 = RΓ is the unique minimizer of J𝜏 [𝜂]. This observation is a manifestation of the results proven in Bogomolny and Hou32

for general loadings and general shapes of domains, obstacles, and free boundaries

380 SHARMA AND RANGARAJAN

itself convergent to the free boundary. The latter point is particularly relevant for the gradient descent algorithm discussed
in the next section, where we compute free boundary iterates {Γk}k as a minimizing sequence of J𝜏 . Condition (11b) is then
crucial for deducing convergence of the computed sequence {Γk} to Γ. We intentionally omit discussing further technical
details from Bogomolny and Hou32 related to the analysis of J𝜏 , but mention that the assumptions in Equation (11) are
satisfied in all our numerical examples.

3 A GRADIENT DESCENT ALGORITHM FOR COMPUTING THE FREE
BOUNDARY

With the functional J𝜏 at hand, we propose a gradient descent algorithm for evolving an initial guess for the shape of the
free boundary in an obstacle problem to its equilibrium configuration. Realizing such an algorithm requires making a few
crucial choices, prominent among them being the representation adopted for free boundary iterates and an ansatz for the
descent direction. The latter is often referred to as the free boundary “velocity” in the literature on shape optimization. We
begin this section by providing a concise description of the algorithm in Section 3.1. We discuss the implicit representation
adopted for free boundary iterates using local maximum entropy basis functions in Section 3.2. The velocity computed in
the algorithm is based on the sensitivity of J𝜏 that is discussed in Section 3.3 and is guaranteed to be a descent direction for
the functional over sufficiently short time intervals. The postprocessing technique used to improve the approximation of
boundary fluxes for the state and its adjoint leading to more accurate calculations for the evolution velocity is discussed
in Section 3.4, which is followed by an assortment of remarks in Section 3.5.

3.1 The algorithm
Algorithm 1 provides a step-by-step description of the gradient descent scheme for computing the free boundary in an
obstacle problem. It is accompanied by a graphical illustration of the steps involved in Figure 5. The images shown in the
figure are snapshots from a numerical experiment simulating the contact of a circular elastic membrane with a spherical
obstacle. They serve as a visual aid for the following explanations.

The kth iteration. The kth iteration of the algorithm starts by identifying the location of the free boundary iterate
Γk as the zero level set of the implicit function 𝜙k. While the initial guess 𝜙0 is user-defined, computing the sequence
of functions 𝜙1, 𝜙2, … corresponding to subsequent time instants is the purpose of the algorithm. The sign convention
adopted for the implicit function is such that the zero sublevel set included in Ω defines the noncoincidence set Dk (see
step 4). Hence, at each point along Γk, the gradient of 𝜙k points away from Dk.

To compute the membrane deflection uk and its adjoint state pk corresponding to the free boundary location Γk using a
finite element method, it is necessary to mesh the domain Dk. This is accomplished using the universal mesh h over Ω
and following the meshing algorithm discussed in Section 4 and outlined in Algorithm 3. For now, it suffices to note that
the routine Compute_Conforming_Mesh returns a mesh of triangles h,k that conforms to Dk in step 5. In particular,
each connected component of Γk is interpolated by edges of the mesh h,k as illustrated in Figure 5B. We interpret Γh,k to
be a discretized version of Γk, since the former is composed of edges in h,k that interpolate Γk.

The (strong form) of the equations satisfied by the uk and pk are given in step 7. Notice that the Dirichlet boundary
conditions along Γk is the height function of the obstacle. Computing the finite element approximations (uh,k, ph,k) of
(uk, pk) are straightforward calculations. In all our numerical experiments, we adopt piecewise linear elements for both
fields. There is, however, no inherent limitation imposed by the algorithm on adopting elements of higher order. Since
the fluxes along Γh,k of the computed finite element solutions are required to estimate the descent direction for the free
boundary in subsequent steps, we postprocess the computed fluxes 𝜕uh,k∕𝜕n and 𝜕ph,k∕𝜕n in step 8 following the well
known technique of Carey et al52 that is discussed in Section 3.4. The evolution velocity for Γk is computed in step 9. The
rationale behind its definition is to ensure a monotonic decrease in the value of J𝜏 with each iteration. That the chosen
velocity accomplishes this goal is justified by evaluating the sensitivity of J𝜏 (see Section 3.3 and the Appendix).

We now arrive at the stage of the algorithm that evolves the free boundary to the next iterate by updating the implicit
function 𝜙k to 𝜙k + 1 with the velocity along Γk prescribed to be Vn along the direction of the local normal. This is accom-
plished by the routine Evolve_Free_Boundary that is outlined in Algorithm 2 and discussed in Section 3.2. The idea
behind the update consists in evolving the nodes of Γh,k along the local normal to Γk with the computed velocity over the
given time step Δtk + 1, and then determining 𝜙k + 1 through a projection operation.

SHARMA AND RANGARAJAN 381

Time step and backtracking. The time step Δtk + 1 used for advancing the boundary is computed based on an upper
bound hΓ for the distance by which the free boundary can be perturbed during the iteration. Specifically in step 10, we
compute Vmax as the (maximum) norm of the nodal velocities along Γh,k. With the intention of limiting the perturbation
of Γk during the kth iteration to hΓ, we set the time step for the iteration to be Δtk = hΓ∕Vmax and advance the implicit
function 𝜙k to 𝜙k + 1 with the routine Evolve_Free_Boundary. In particular, Δtk + 1 defined by step 18 in this way is

382 SHARMA AND RANGARAJAN

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 5 An illustrative description of the steps in Algorithm 1 during a generic iteration. We have omitted the legends for the contour
plots in (A), (C), (D), and (H) because they are irrelevant for the purpose of the explanations. A, Step 4: Nonpositive contours of 𝜙k

superimposed on the universal mesh Uh over Ω. The boundary Γk is the zero level set of 𝜙k and Dk is the zero sublevel set; B, Steps 5, 6: The
routine Compute_Conforming_Mesh uses h to compute a mesh h,k conforming to Dk. The collection of edges in h,k defines the
interpolant Γh,k of Γk; C, Step 7: Contours of the finite element approximation of the membrane displacement uh,k over Dk computed with
linear elements; D, Contours of the finite element approximation of the adjoint state ph,k over Dk computed with linear elements; E, Local
normals to the free boundary iterate Γk at the nodes of Γh,k; F, Step 9: The iterate Γk is evolved along the local normal direction with the
velocity Vn computed in step 9. The exact solution Γ is shown in dashed lines for reference; G, Step 18: Algorithm 2 advances the nodes of
Γh,k to Γ̃h,k+1 over a time step Δtk + 1 with the velocity Vn n; H, Algorithm 2 computes the implicit function 𝜙k + 1 defining the next free
boundary iterate Γk + 1 through a projection operation on Γ̃h,k+1 [Colour figure can be viewed at wileyonlinelibrary.com]

iteration-dependent. We highlight that such a choice is preferable to adopting a constant time step. The latter drastically
slows down the convergence of free boundary iterates since the velocity of the free boundary progressively reduces as it
approaches the exact solution. This observation is of course typical of gradient descent algorithms in general, and greedy
time-stepping choices coupled with backtracking techniques of the kind that we adopt in Algorithm 1 is a common way
to overcome this bottleneck.53

It is possible that the time step used to advance the free boundary iterate Γk− 1 to Γk is too large. To detect if this is
indeed the case, we compare the values of J𝜏(Γk) and J𝜏(Γk− 1) in step 14. If J𝜏(Γk) < J𝜏(Γk− 1) as desired, then we proceed
to the next iteration. Otherwise, the estimated time step is deemed to be too large, ie, the computed velocity is not a
descent direction over the entire interval Δtk. Hence, we reverse course by reducing hΓ → hΓ∕2 and resetting 𝜙k to 𝜙k− 1
respectively and repeat the kth iteration. In this way, backtracking in Algorithm 1 effectively reverts the current iteration
to the previous one, while reducing the bound for free boundary perturbations. In our numerical experiments, we set
hΓ = h and htol = h∕26, so that free boundary perturbations are comparable to the mesh size during the initial few
iterations.

Termination. Algorithm 1 terminates in one of two ways. The velocity-based criterion in step 12 terminates the
algorithm if the velocity computed for evolving Γk is smaller than the prescribed tolerance Vtol. The specific norm of the
velocity adopted for this criterion is generally insignificant and can be altered based on user preferences. The second
criterion, namely, hΓ > htol, is distance-based and effectively terminates the algorithm after a fixed number of
backtracking steps. The rationale behind it is that subsequent iterations of the algorithm would necessarily perturb the
free boundary by distances smaller than htol. The simple bisection-based backtracking strategy employed in Algorithm 1
can be replaced by more general line search methods.53 Upon termination, the algorithm returns the pair (Γkmax ,uh,kmax)
as the computed approximation to the solution of the obstacle problem.

http://wileyonlinelibrary.com

SHARMA AND RANGARAJAN 383

3.2 Representation and update of free boundary iterates
We assume that the evolution of the free boundary admits an implicit representation as the zero level set of a function
𝜙(x, t) defined on Ω × [0,T], where [0,T] represents the “time” interval of interest and 𝜙(x, t = 0) = 𝜙0 is a given initial
guess. The sequence of implicit functions {𝜙k}k realized in Algorithm 1 is the result of specific discretizations adopted
for 𝜙 in space and time. Permitting a minor abuse in notation, we do not distinguish between 𝜙 and its discretization in
the following discussion.

Discretization in space: We require that, at each instant t > 0, 𝜙(x, t) belong to the finite-dimensional space Wh spanned
by the basis {Na}𝓁a=1 consisting of local maximum entropy approximants defined using the collection of 𝓁 nodes in Mh
provided as input in Algorithm 1. Hence, we have

𝜙(x, t) =
𝓁∑

a=1
𝜙a(t)Na(x), x ∈ Ω and t > 0, (12)

where the coefficients {𝜙a(t)}a are understood to be the generalized coordinates or degrees of freedom of the free boundary
at time t. Max-ent nodes in Mh are assumed to be distributed over a domain  that includes Ω, so that functions in Wh
are well defined at each point in Ω. Specifically,  ⊃ Ω automatically ensures that Ω is a subset of the convex hull of the

384 SHARMA AND RANGARAJAN

nodes in Mh, and hence, that 𝜙 in Equation (12) is well defined over Ω. We omit details of the definition and evaluation
of max-ent functions here and instead refer to Arroyo et al,54,55 which we closely follow in our implementation.

Discretization in time: A natural scheme for evolving the semidiscrete representation of 𝜙 in Equation (12) is using the
advection equation

𝜕𝜙

𝜕t
(x, t) + V(x, t) · ∇𝜙(x, t) = 0 for x ∈ Ω and t > 0, (13)

where V(x, t) represents an extension of the velocity of the free boundary to the entire domain Ω. Equation (13) is indeed
commonly used in the literature on level set methods to evolve the geometry in structural shape optimization problems,37,38

and more pertinently, in numerical methods for resolving variational inequalities42 and obstacle problems.36 Equation (13)
can then be integrated in time, using the method of characteristics56 for instance. In the context of our algorithm however,
the choice of generalized coordinates {𝜙a(t)}a for 𝜙 makes such calculations quite tedious. Furthermore, we would like to
avoid well-known difficulties inherent in Equation (13)- extending the velocity defined over the free boundary to nearby
neighborhoods or even over the entire domain Ω, and the need for periodic reinitialization of the level set function, to
name just a couple.

Instead, we evolve 𝜙 in Equation (12) through a combination of collocation along the free boundary, a forward
Euler scheme in time, and a projection operation onto Wh at each iteration. Algorithm 2 defining the routine
Evolve_Free_Boundary provides details of the steps involved. Let us consider updating 𝜙k to 𝜙k + 1 with Algorithm
2. First, we exploit the fact that the mesh h,k conforms to Γk, ie, that edges of h,k interpolate Γk. Then, we impose the
computed velocity Vnn of the free boundary at the nodes lying on Γk while assuming that the velocity remains a constant
over the prescribed time interval. This effectively amounts to advecting the piecewise linear curve Γh,k to Γ̃h,k+1 using a
forward Euler scheme (see steps 23 to 27 in Algorithm 2 and Figure 5G). Finally, a projection of the data  consisting of
nodal locations and normals of Γ̃h,k+1 onto Wh defines the implicit function 𝜙k + 1. We label the projection operator map-
ping the oriented point cloud  (step 28) onto Wh as SSDWh and discuss its details next. The label SSD is inspired by the
nomenclature introduced in Calakli and Taubin57 for computing implicit representations for point cloud data in computer
graphics applications.

Implicit functions from oriented point clouds: With the understanding that  is a collection of m pairs {(xi,ni)}i of point
locations and corresponding orientations realized at the end of step 33 in Algorithm 2, we define 𝜙k+1 = SSDWh() to be
the minimizer in Wh of the functional

E [v] ≜ 1
2

m∑
i=1

v2(xi) +
1
2

m∑
i=1

||∇v(xi) − ni||2 + 𝛼

2 ∫


H(v) ∶ H(v)d, (14)

where H(v) denotes the Hessian ∇∇v and 𝛼 > 0 is a user-defined parameter presumed to be small. The first and second
terms in the definition of E in Equation (14) constrain the zero level set of 𝜙k + 1 to lie close to the given collection of
points {xi}i and the gradients {∇𝜙k + 1(xi)}i to approximate the given orientations {ni}i. The third term, which can be
interpreted as a regularization, suppresses the appearance of large curvatures in 𝜙k + 1, and more crucially, renders the
functional E coercive. Hence, we seek

𝜙k+1 = SSDWh() ≜ arg min
v∈Wh

E [v]. (15)

Noticing that E is a quadratic functional, it is straightforward to demonstrate that the problem in Equation (15) is well
defined for any choice of 𝛼 > 0, and hence, that 𝜙k + 1 exists and is unique.

Steps 37 to 39 in Algorithm 2 define the linear system of equations to be resolved for computing the coefficients of 𝜙k + 1
in the basis {Na}a of Wh. Therein, we evaluate integrals over  using standard quadrature rules and a triangular mesh
over . Note that unlike Dk, the domain  is fixed and hence needs to be meshed just once. In fact, since the contribution
K̂ab = ∫H(Na) ∶ H(Nb)d to the stiffness matrix K that depends on  in step 39 is independent of the data  , the matrix
K̂ needs to be evaluated just once at the beginning of a simulation and can be reused at each iteration when assembling K.

3.3 Sensitivity of the functional J𝝉 and the descent direction
The idea behind the choice of the descent direction in Algorithm 1 stems from the shape derivative (ie, the sensitivity)
of the functional J𝜏 . The shape derivative of J𝜏(𝛾) at the free boundary location 𝛾 in the direction of the velocity field V is

SHARMA AND RANGARAJAN 385

denoted by dJ𝜏(𝛾;V) and defined to be the limit58

dJ𝜏(𝛾;V) ≜ lim
𝜀→0

J𝜏(𝛾𝜀) − J𝜏(𝛾)
𝜀

, (16)

where V ∶ Ω → R2 is a sufficiently smooth vector field that vanishes on 𝜕Ω and 𝛾𝜀 ≜ {x + 𝜀V(x) ∶ x ∈ 𝛾}. Underlying
Equation (16) is the fact that the limit exists in the first place, ie, that J𝜏 is shape differentiable (see Theorem 6.2 in
Bogomolny and Hou32). Following the detailed calculations provided in the Appendix, we find the shape derivative of
J𝜏 to be

dJ𝜏(𝛾;V) = ∫
𝛾

(
𝜕u𝛾

𝜕n
− 𝜕𝜓

𝜕n

)(
1
2

(
𝜕u𝛾

𝜕n
+ 𝜕𝜓

𝜕n

)
− 𝜏

𝜕p𝛾

𝜕n
+ (𝜏 − 1)

𝜕u𝛾

𝜕n

)
(V · n) d𝛾, (17)

where the state u𝛾 and the adjoint p𝛾 are solutions of

⎧⎪⎨⎪⎩
−Δu𝛾 = 𝑓 on D𝛾 ,

u𝛾 = 0 on 𝜕Ω,
u𝛾 = 𝜓 on 𝛾

and
⎧⎪⎨⎪⎩
−Δp𝛾 = 0 on D𝛾 ,

p𝛾 = 0 on 𝜕Ω,
p𝛾 = 𝜓 on 𝛾.

(18)

We highlight a few of aspects of Equation (17). First, it is not surprising that dJ𝜏(𝛾;V) is an integral over just the free
boundary. This is to be expected from the Hadamard structure theorem,58 which assures that the shape derivative admits
a structure of the form ⟨G, (V · n)⟩𝛾 for some kernel G and duality pair ⟨·, ·⟩𝛾 on 𝛾 . In our case, ⟨·, ·⟩𝛾 is the inner product
in L2(𝛾) and the kernel G is the term multiplying (V · n) in Equation (17). Second, Equation (17) reveals as predicted by
the structure theorem, that the shape derivative depends only on the component of the velocity V normal to 𝛾 . Intuitively,
the component of V tangential to 𝛾 does not contribute to changing the shape of the free boundary and therefore leaves
the functional J𝜏 unaffected. Finally, the mismatch in fluxes along the free boundary (𝜕u𝛾∕𝜕n − 𝜕𝜓∕𝜕n) that is omitted
in the problem for u𝛾 in Equation (18), appears naturally in the shape derivative. This guarantees that the exact solution
for the free boundary is necessarily a stationary point of J𝜏 .

With the intention of rendering the shape derivative to be negative, we set

V = −
(
𝜕u𝛾

𝜕n
− 𝜕𝜓

𝜕n

)(
1
2

(
𝜕u𝛾

𝜕n
+ 𝜕𝜓

𝜕n

)
− 𝜏

𝜕p𝛾

𝜕n
+ (𝜏 − 1)

𝜕u𝛾

𝜕n

)
n, (19)

so that

dJ𝜏(𝛾;V) = − ∫
𝛾

(
𝜕u𝛾

𝜕n
− 𝜕𝜓

𝜕n

)2(1
2

(
𝜕u𝛾

𝜕n
+ 𝜕𝜓

𝜕n

)
− 𝜏

𝜕p𝛾

𝜕n
+ (𝜏 − 1)

𝜕u𝛾

𝜕n

)2

d𝛾. (20)

Notice that the integrand in Equation (20) is strictly nonnegative, and therefore, dJ𝜏(𝛾;V) ≤ 0 as desired. Consequently,
J𝜏(𝛾Δt) ≤ J𝜏(𝛾) for Δt > 0 that is sufficiently small. In fact, we are generally assured of a strict descent for J𝜏 with
Equation (19) because a vanishing shape derivative in Equation (20) implies that V vanishes on 𝛾 , which corresponds to
𝛾 being a stationary point of J𝜏 and hence to a converged solution in the algorithm.

The case 𝜏 = 0: Let us revisit the functional J0 introduced in Section 2. Setting 𝜏 = 0 in Equation (17), we find that
that the shape derivative of J0 is

dJ0(𝛾;V) = − ∫
𝛾

(
𝜕u𝛾

𝜕n
− 𝜕𝜓

𝜕n

)2

(V · n) d𝛾. (21)

It is clear from Equation (21) that J0 has a stationary point at the exact free boundary where 𝜕u𝛾∕𝜕n = 𝜕𝜓∕𝜕n. However,
the choice Vn = (𝜕u𝛾∕𝜕n − 𝜕𝜓∕𝜕n)2 as the velocity of the free boundary is futile in practice because, even though it
vanishes at the exact solution, it is always positive away from it and therefore results in a continually shrinking coincidence
set in numerical simulations.

386 SHARMA AND RANGARAJAN

The case f = 0: Another interesting scenario that the shape derivative in Equation (17) helps to inspect is the case when
f = 0. Noting from Equation (18) that the state and the adjoint solutions coincide over D𝛾 when f = 0, Equation (17)
yields

dJ𝑓=0
𝜏 (𝛾;V) = − ∫

𝛾

(
𝜕u𝛾

𝜕n
− 𝜕𝜓

𝜕n

)2

(V · n) d𝛾, (22)

which is identical to Equation (21) and is independent of the value of 𝜏. For the same reasons mentioned previously,
setting the free boundary velocity Vn to (𝜕u𝛾∕𝜕n − 𝜕𝜓∕𝜕n)2 causes the coincidence set to shrink at all times. We argue
that such a scenario is in fact not a discrepancy. Recall from Equation (11a) that we require −Δ𝜓 + (2𝜏 − 1)f ≥ 0 on Ω for
J𝜏 to have a minimum at the free boundary. In the present context with f = 0, this condition reduces to the requirement
that Δ𝜓 ≤ 0, implying that 𝜓 is super harmonic on Ω. By virtue of the maximum principle,59 we infer that, if 𝜓 has a
minimum in Ω, then 𝜓 is a constant. Then, the assumption that 𝜓 > u on 𝜕Ω implies that the membrane does not, in
fact, make contact with the obstacle. In such a case, the coincidence set should indeed be empty. On the other hand, if 𝜓
does not have a minimum in Ω, it is intuitively clear that the coincidence set is again empty.

3.4 Flux recovery along the free boundary
From Equation (19), we infer that the accuracy of the descent direction Vn in Algorithm 1 depends directly on the approx-
imation of the boundary fluxes 𝜕uk∕𝜕n and 𝜕pk∕𝜕n, where k denotes the iteration count. It is also well known that direct
approximation of these fluxes along Γh,k, say as∇uh,k ·n and∇ph,k ·n, is ill advised, since the rate of convergence of fluxes is
notably inferior to that of the primal variables themselves. Practical issues invariably arise from oscillatory behavior of
solution derivatives, especially with linear finite element approximations.

While it is certainly possible to use sophisticated flux recovery strategies, we adopt the simple technique introduced in
Carey et al.52 Hence, the postprocessed fluxes at node i of the mesh h,k lying on Γk are computed as

𝜕nûh,k(xi) =
1
hi

n∑
𝑗=1

Ai𝑗U𝑗 − bi and 𝜕np̂h,k(xi) =
1
hi

n∑
𝑗=1

Ai𝑗P𝑗 , (23)

where A and b are the finite element matrix and force vector with components

Ai𝑗 = ∫
Dk

∇𝜒i · ∇𝜒𝑗 dDk and bi = ∫
Dk

𝑓𝜒i dDk,

{𝜒i}n
i=1 are the piecewise linear shape functions defined over the mesh h,k and spanning the finite element space, Un× 1

and Pn× 1 are solutions of the linear systems AU = b and AP = 0, respectively, while subject to the Dirichlet boundary
conditions along Γh,k and 𝜕Ω noted in Equation (18), and hi is the average of the lengths of the edges of Γh,k intersecting
at the node xi. With this notation at hand, we note that the finite element solutions computed in step 7 of Algorithm 1 are
simply

uh,k =
n∑

a=1
Ua𝜒a and ph,k =

n∑
a=1

Pa𝜒a.

In particular, postprocessing the fluxes along Γh,k in Equation (23) only requires reassembling components of the residual
vectors ru = AU − F and rp = AP corresponding to indices of nodes lying on Γk, which are ignored while imposing
Dirichlet boundary conditions. We refer to Carey et al52,60 for discussions on interpreting Equation (23) as a projection of
the fluxes∇uh,k·n and∇ph,k·n on the finite element space while employing a lumped mass matrix, and to Pehlivanov et al61

for results on the super convergent behavior of fluxes computed in this way.

3.5 A few remarks
We conclude this section with a few remarks that were deferred until details of Algorithm 1 were fully discussed.

1. The implicit representation for the free boundary that we have adopted is especially convenient when the free bound-
ary can undergo large shape changes during the course of a simulation. The numerical experiments in Section 5

SHARMA AND RANGARAJAN 387

provide categorical evidence of this fact. In contrast, choosing a parametric representation (eg, splines) quickly results
in a nonuniform distribution of tracking points when the motion of the free boundary is nonuniform.

2. The appearance of point cloud representations for free boundaries in Algorithm 2 is an artifact of the scheme we
have chosen to update the implicit functions {𝜙k}k. Algorithm 1 always maintains a smooth representation for free
boundary iterates.

3. The rationale behind choosing local maximum entropy approximants for computing implicit functions is their
smoothness. Hence, at each iteration k, 𝜙k is a smooth function, and consequently, its zero level set Γk is also a
smooth curve provided that ∇𝜙k is nonsingular along Γk. Maintaining a C2-regular free boundary Γk is crucial for the
robustness of the triangulation algorithm with universal meshes discussed in Section 4. Additionally, maintaining a
differentiable representation for the free boundary ensures unambiguous definitions of local normals, and hence of
the direction of the evolution velocities. It is also possible to adopt, for instance, spaces spanned by spline functions to
represent level set functions.62 We favor max-ent functions for their mesh-free nature, which makes them convenient
for the purpose of adaptivity.

4. For a given evolution {Γk}k of the free boundary, the choice of the corresponding implicit functions {𝜙k}k is not
unique. The function 𝜙k ∈ Wh is but one representation for Γk that is identified using the operator SSDWh .

5. We observe in our numerical experiments that computing implicit functions as projections of oriented point clouds
with the operator SSDWh suppresses the possibility of topological changes in the free boundary. Specifically, this
happens because of the opposing orientations of its connected components. For this reason, we assume in all our
experiments that the initial guess Γ0 has the same topology as the desired solution. Nevertheless, free boundaries
with multiple connected components can certainly be computed. It is worth noting in this context that Algorithm 1
provides complete control over prescribing the topology of the region of contact. Such control is lost when computing
the free boundary a posteriori from membrane deflections.

6. An important practical consideration in shape optimization problems in general, and our problem in particular, con-
cerns controlling sizes of geometric features along the free boundary. Even if the exact solution is smooth, it is possible
that the computed free boundary has small features that vary over length scales comparable to the mesh size h of h.
In design optimization problems for example, it is common to add perimeter-based constraints to suppress oscilla-
tory behavior of the free boundary. Here, we adopt a simple rule of thumb wherein the spacing between nodes in Mh
is set to be larger than 2h, so that the projection operation SSDWh() suppresses small scale features present in the
point cloud  and, in turn, in the free boundary. This strategy works well in practice and is used in all the numerical
examples presented in Section 5.

7. In Algorithm 1, we have used a finite element method to essentially map Dirichlet boundary conditions in
Equation (1c) to the boundary fluxes of the state and its adjoint. Such a calculation can be performed using a boundary
element method as well. Our choice of the finite element method is motivated by the goal of adopting techniques pro-
posed here to more general classes of shape optimization problems. Moreover, the proposed algorithm seems suitable
for implementation within commercial and open source finite element codes.

8. A notable feature of Algorithm 1 is that it restricts calculations of the state and its adjoint to just the noncoincidence
sets. This has the obvious benefit of avoiding computing solutions over the larger domain Ω, considering the fact that
we know uk = 𝜓 over the coincidence set at each iteration k. Furthermore, we avoid issues of suboptimal accuracy
of finite element solutions stemming from the lack of regularity of uk along the free boundary.

9. A minor detail in Algorithm 2 involves estimating normals to Γ̃h,k+1 at its nodes. We exploit the fact that Γh,k interpo-
lates the zero level set of 𝜙k to evaluate nodal normals to Γh,k in step 26. In contrast, Γ̃h,k+1 is a piecewise linear curve
and there is necessarily some ambiguity in defining its nodal normals in step 31. In our implementation, we set the
normal at a node of Γ̃h,k+1 by normalizing averages of edgewise normals.

10. It may seem that, because the mesh h,k is updated after each iteration k, so must the finite element data struc-
tures required to compute uh,k and ph,k. This would indeed be the case if, for instance, the domain Dk is meshed
with a Delaunay triangulation algorithm.63 However, Algorithm 3 discussed in the following section ensures that
the connectivity of the mesh h,k is a subset of the connectivity of the universal mesh h. In particular, the routine
Compute_Conforming_Mesh does not introduce any new vertices when computing h,k from h; it merely per-
turbs the locations of a few vertices in h. For this reason, it is possible to use data structures whose sizes and sparsity
are based solely on the universal mesh h. While the stiffness matrices and force vectors required to compute uh,k and
ph,k have to be reassembled at each iteration k, they have to be allocated just once at the beginning of a simulation.

11. The parameter 𝜏 is practically invisible in Algorithm 1 and appears only while evaluating the free boundary velocities.
Yet, it plays a crucial in identifying a descent direction for the shape functional.

388 SHARMA AND RANGARAJAN

12. A minor detail in Algorithm 1 lies in evaluating the shape functional J𝜏 in step 14. Computing J𝜏(Γk) requires evalu-
ating an integral over the coincidence set Ck, which we do by triangulating Ck and resorting to numerical quadrature.
The routine Compute_Conforming_Mesh and the same universal mesh h used to triangulate Dk serves to mesh
Ck as well. In fact, in our implementation, we simply switch the sign of the implicit function 𝜙k when invoking the
routine Compute_Conforming_Mesh to triangulate Ck instead of Dk.

4 DISCRETIZING EVOLVING DOMAINS WITH UNIVERSAL MESHES

Algorithm 3 outlines the routine Compute_Conforming_Mesh that computes triangulations conforming to C2-regular
domains immersed in a universal mesh h. It is accompanied by supporting graphical illustrations in Figures 6 and 7.
We invoke the routine in Algorithm 1 to triangulate the sequence of noncoincidence sets {Dk}k, as well as to triangulate
coincidence sets {Ck}k when evaluating the shape functional J𝜏 at each iteration.

Related literature: Algorithm 3 is based on two key ideas- parameterizing immersed boundaries over a specific collec-
tion of edges in h with the closest point projection onto the immersed boundary, and an optimization-based directional
vertex relaxation (dvr) algorithm. Detailed discussions, examples, and analyses of parameterizing immersed boundaries

SHARMA AND RANGARAJAN 389

with the closest point projection map can be found in Rangarajan and Lew.34,64 The dvr algorithm is introduced and ana-
lyzed in Rangarajan and Lew35 and efficient methods for implementing it are discussed in Rangarajan.65 We mention
that Algorithm 3 differs from the meshing algorithm described in Rangarajan and Lew33 only in the choice of the ver-
tex relaxation algorithm. A three-dimensional analog of Algorithm 3 for triangulating domains immersed in tetrahedral
meshes is described and tested in Rangarajan et al.66 Cognizant of the fact that details and analyses supporting Algorithm
3 are well documented in the literature, in the following, we only provide a terse description of the meshing algorithm
with sufficient detail to facilitate a correct implementation. We mention conditions on the mesh size and on angles in the
universal mesh, and on the regularity of the immersed domain assumed in the algorithm. We do not, however, delve into
the rationale behind these assumptions and direct interested readers to the references cited.

(A) (B) (C)

FIGURE 6 An illustration of the steps in Algorithm 3. Additional details of nodal perturbations that map the nonconforming mesh in
(B) to the conforming one in (C) are shown in Figure 7. A, Nonpositive contours of an implicit function 𝜙 superimposed on a universal mesh.
The colored region is the set 𝜔 to be triangulated. The function 𝜙 is identical to that in Figure 5A; B, The mesh shown consists of triangles
having at least one vertex where 𝜙 < 0. Positive vertices (I+) are highlighted in blue, while vertices to be relaxed (IR) are highlighted in green;
C, Projecting vertices in I+ to their closest point in Γ while relaxing those in IR with dvr transforms the mesh in (B) to a mesh conforming to 𝜔

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 7 For the example in Figure 6, the first row of images visualize the projection of positive vertices toward the immersed boundary
Γ over NP = 4 passes. The second row of images show the relaxation the vertices in IR computed after each projection pass [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

390 SHARMA AND RANGARAJAN

Description of the meshing algorithm: The domain to be triangulated, say 𝜔 ⊂ R2, is specified implicitly in
Algorithm 3 as the zero sublevel set of a function 𝜙. The boundary of 𝜔 is the zero level set of 𝜙 and is denoted by Γ. In
the context of Algorithm 1, 𝜙,𝜔, and Γ correspond to the iterates 𝜙k,Dk, and Γk, respectively. In addition to the universal
mesh h, the algorithm requires two integer-valued parameters NP and NR. The values for these parameters that we have
used in our numerical experiments are indicated in the algorithm and their purpose will be explained shortly.

The algorithm starts in step 46 by initializing a mesh h to be the collection of all triangles in h having 𝜙 ≤ 0 at one
or more of its vertices. In steps 47 and 48, we identify two subsets of vertices in h. The first set consists of vertices where
𝜙 ≥ 0 and is labeled as I+, while the second set IR consists of vertices in the vicinity of Γ having 𝜙 < 0. In keeping
with the terminology introduced for universal meshes in previous work, we call I+ the collection of positive vertices. In
subsequent steps, h will be transformed into a mesh that conforms to 𝜔 by mapping each vertex in I+ to their respective
closest points in Γ, while simultaneously relaxing vertices in IR with the dvr algorithm. Figure 6 shows an illustrative
example to this effect, where the function 𝜙 and the domain 𝜔 are identical to those appearing in Figure 5A. Figure 6A
shows the nonpositive contours of 𝜙 superimposed on the universal mesh h over a circular domain. The submesh h of
h consisting of triangles that have at least one vertex lying in 𝜔 are shown in Figure 6B, where the collections of vertices
in I+ and IR are also highlighted. Algorithm 3 maps the mesh shown in Figure 6B to the conforming mesh in Figure 6C by
projecting vertices in blue to their closest point in Γ and by relaxing vertices in green. In particular, the meshes appearing
in Figure 6B and 6C differ only in the locations of their vertices in I+ ∪ IR.

Vertices in I+ are projected onto their respective closest point in Γ incrementally through the updates defined in step 51.
At the end ofNP projection passes, each vertex in I+ lies onΓ. These intermediate perturbations are visualized in Figure 7A
to 7D. To accommodate perturbations of positive vertices toward Γ, we iteratively relax vertices in IR along prescribed
directions with the dvr algorithm in step 55. In particular, a vertex i ∈ IR is perturbed along a prescribed direction d by
a coordinate that maximizes the minimum among the qualities of the triangles in its 1-ring. Denoting the collection of
triangles in the 1-ring of vertex i by {Ki𝑗}

ni
𝑗=1, and with the understanding that perturbing vertex i from its location xi to

xi + 𝜆d alters triangle Ki𝑗 to K𝜆
i𝑗

, the coordinate 𝜆opt defining the update for i is therefore computed in step 55 as

𝜆opt ≜ argmax
𝜆∈R

min
1≤𝑗≤ni

Q
(

K𝜆
i𝑗

)
. (24)

In all our simulations, we set Q to be the mean ratio triangle quality metric so that vertex relaxations seek to render trian-
gles that are as close to equilateral as possible. Figure 7E to Figure 7H visualize these relaxations realized after successive
projection passes shown in the first row of images in Figure 7.

Remarks: The apparent simplicity of Algorithm 3 is deceptive. Numerous examples shown in Rangarajan and Lew33,64

reveal that without restrictions on the mesh size h, on angles in h, and on the regularity of Γ, the mesh h computed
by the algorithm can have inverted, overlapping, or degenerate elements. Analyzing projections of positive vertices onto
Γ reveals two main restrictions on h: (i) the mesh size h should be sufficiently small compared with the geometric
features of Γ (eg, curvatures and feature sizes) and (ii) certain interior angles of its triangles that are intersected by Γ
should be strictly acute. The latter is referred to as the acute conditioning angle assumption in the algorithm. In practice,
a simple way to satisfy this requirement is to ensure that all triangles in the vicinity of the immersed boundary are acute
angled. In the context simulating problems with evolving boundaries, as is the case in Algorithm 1, the location of the
immersed boundary changes with each solution iteration. Consequently, we ensure if possible, that all triangles in h are
strictly acute angled (see Section 5.1). The condition that Γ be a C2-regular boundary stems from the choice of the closest
point projection to map positive vertices onto Γ. It is for the purpose of maintaining a C2-regular description for the free
boundary that we choose max-ent basis functions to define the implicit representations {𝜙k}k in Algorithm 1. Precise
statements of the assumptions mentioned here and of their consequences can be found in Rangarajan and Lew.34

We refer to Rangarajan and Lew35 for assumptions on the element quality metric required in dvr, and the guarantees on
mesh improvement it provides. There, the rationale behind iteratively relaxing vertices is discussed at length. In general,
choosing a larger number relaxation iterations (NR) improves the final mesh quality further. The reason for projecting
positive vertices onto Γ over multiple steps (ie, NP > 1) is to ensure that no element in h is inverted in the process,
which is a prerequisite for dvr to be successful in improving element qualities. Implementing vertex updates by computing
optimal perturbations in dvr requires resolving nonsmooth max-min problems of the form mentioned in Equation (24).
To this end, we use the algorithms provided in Rangarajan.65

We end this section mentioning that we have not attempted to describe the most general algorithm for triangulating
domains immersed in universal meshes. For instance, the relaxation direction for vertices in dvr need not be restricted

SHARMA AND RANGARAJAN 391

to the cardinal directions, nor have we diligently reviewed results related to the robustness of the meshing algorithm.
Instead, we have only described how evolving domains realized in Algorithm 1 are meshed with the same universal mesh.
The references provided in this section document various details involved in Algorithm 3 that we have intentionally
omitted here.

5 NUMERICAL EXPERIMENTS

We devote this section to examining the performance of Algorithm 1 while paying special attention to demonstrating:

• the insensitivity of computed solutions to the choice of the initial guess Γ0;
• the insensitivity of computed solutions to the choice of the parameter 𝜏, provided that it satisfies 𝜏 ≥ 1 and

Equation (11a). In particular, we reinforce the point that 𝜏 is not a penalty-type parameter. Algorithm 1 is applicable
for any choice of 𝜏 ≥ 1 that satisfies Equation (11a);

• that the functional J𝜏 decays monotonically with increasing number of iterations of the algorithm;
• that the velocity of the free boundary decays to zero close to the correct solution, which, in the context of the proposed

algorithm, is equivalent to a vanishing shape derivative;
• the convergence of the computed free boundary to the exact solution in cases when the latter is known (see Sections 5.4

and 5.5);
• and to inspecting the magnitude of the error in the free boundary when compared with the mesh size.

5.1 Choice of universal meshes
First, we discuss the choice of universal meshes in our examples. Since the evolution of the free boundary starting from
an initial guess is not known a priori, we adopt a universal mesh h over Ω that is uniformly refined. Similarly, to guaran-
tee that the acute conditioning angle assumption required in Algorithm 3 is satisfied at each iteration of Algorithm 1, we
ensure that all triangles in h are strictly acute, except possibly in a small vicinity of 𝜕Ω. The exception along 𝜕Ω is incon-
sequential in simulations because the free boundary necessarily remains away from 𝜕Ω. It is however useful in practice,
especially when Ω is a curved domain, because constructing acute triangle meshes over such domains is a nontrivial task.

Figure 8A shows the universal mesh over a square-shaped domain that is used for simulating the example in Section 5.5.
All angles in the mesh are smaller than 80◦. In simulations requiring more mesh refinement, we subdivide each triangle
into four self-similar ones so that the mesh size is halved with each refinement while the angle bounds remain unchanged.
Figure 8B illustrates the procedure for constructing universal meshes over circular domains required in the examples in
Sections 5.3, 5.4, and 5.6. Therein, the idea is to consider a background mesh of equilateral triangles as a universal mesh
for triangulating the circular domain. Since 𝜕Ω is fixed, the mesh h over Ω needs to be computed just once at the start

(A) (B)

FIGURE 8 Choice of universal meshes for the examples in Section 5. Since the evolution of the free boundary is not known a priori, we
choose meshes with uniform refinement. In order to satisfy the acute conditioning angle requirement in Algorithm 3, we ensure that all
triangles in the mesh, except possibly along the boundary of the domain, are acute angled. A, Universal mesh for the example in Section 5.5.
All triangles are strictly acute; B, The examples in Sections 5.3, 5.4, and 5.6 require a universal mesh over a circular domain. To this end, we
immerse the circular domain in a background mesh of equilateral triangles and use Algorithm 3 to compute a mesh conforming to the circular
geometry. As indicated on the right, all triangles in the mesh computed this way, besides a few along the boundary, are strictly acute angled

392 SHARMA AND RANGARAJAN

(A) (B) (C) (D)

FIGURE 9 Initial guesses for the free boundary used in the examples in Sections 5.3, 5.4, and 5.6. A, Initial guess 1; B, Initial guess 2;
C, Initial guess 3; D, Initial guess 4

of a simulation. We ensure that the angles in the mesh h computed this way are strictly acute, except possibly along
the boundary 𝜕Ω. For more refined universal meshes over Ω, we uniformly refine the background equilateral mesh and
recompute the mesh h over Ω.

It is certainly possible to construct adaptively refined universal meshes, by tiling adaptively refined quadtrees with
stencils of acute triangulations for instance.33,67 Such meshes are particularly beneficial when free boundary iterates are
deemed to be close to a converged solution, so that mesh refinement can be restricted to a vicinity of the correct free
boundary and tailored to match its geometric features. We have not considered such refinement in our experiments.
Nevertheless, we highlight that the universal mesh in Algorithm 1 can be chosen in an iteration-dependent manner
with no alterations in any of its steps. After all, the (k + 1)th iteration depends on the kth one only through the free
boundary iterate. There is no requirement or restriction that the universal meshes over Ω at successive iterations be
identical. However, we caution against frequent revisions in the choice of the universal mesh because of the computational
overheads involved in reallocating mesh and finite element data structures.

5.2 Finite element approximation
At the kth iteration of Algorithm 1, we approximate the restriction of the state and adjoint fields over Dk in the finite ele-
ment space Vh,k of continuous piecewise affine functions defined over the mesh h,k, with Dirichlet boundary conditions
imposed over Γk and 𝜕Ω. Hence,

uh,k =

{
arg minvh∈Vh,k∫Ω

(
1
2
∇vh · ∇vh − 𝑓vh

)
dΩ over Dk,

𝜓 over Ck
(25a)

and ph,k = arg min
qh∈Vh,k ∫

Ω

1
2
∇qh · ∇qh dΩ over Dk. (25b)

The choice of linear elements for approximating uk and pk is made solely for convenience. There is no inherent limitation
in the algorithm to first-order elements as we mentioned previously.

An important point we highlight here is that, as the free boundary iterates evolve, the mesh h,k changes and so does
the finite element space Vh,k. However, because the connectivity of h,k is necessarily a subset of h irrespective of the
iteration count k, it is possible to devise ways to avoid expensive reallocation of data structures at each iteration. Indeed,
computing uh,k and ph,k can be interpreted as inverting a sub-block of a stiffness matrix assembled over h. While the
specific entries in these matrices need to be updated (reassembled) at each iteration because of vertex perturbations, their
sparsity structure remains unchanged.

5.3 Circular membrane in contact with a flat obstacle
As a first example, we revisit the axisymmetric problem of a circular membrane in contact with a flat obstacle introduced
in Section 2.2. Recall that with parameters chosen according to Equation (4), the exact solution for the free boundary is a
circle of radius exp(−1) concentric with the membrane boundary. Figures 10A and 10B show the sequence of free bound-
ary iterates computed by Algorithm 1 when starting from the initial guesses shown in Figure 9A and 9C, respectively,

SHARMA AND RANGARAJAN 393

(A) (B) (C)

(D) (E) (F) (G)

(H) (I) (J) (K)

FIGURE 10 Details of the numerical example in Section 5.3 simulating contact between a circular membrane and a flat obstacle. The first
row of images show the evolution of free boundary iterates when starting from different initial guesses for Γ0, and a three-dimensional
rendering of the computed deformation of the membrane. Images (D) to (K) show details of the meshes and the free boundary velocities
realized at different iterations corresponding to the simulation in (B). Note that the magnitudes of the velocity vectors shown have been
rescaled (uniformly for visualization purposes, and that the velocities approach zero in (K) indicating convergence of the free boundary.
A, Evolution of free boundary iterates when starting from the initial guess in Figure 9A. Notice the circular symmetry of solution iterates;
B, Evolution of free boundary iterates when starting from the initial guess in Figure 9C. The final solution is essentially identical to that in
(A); C, A three-dimensional rendering of the deformed membrane in contact with a flat obstacle. Only the noncoincidence set is depicted.
Colors indicate contours of the displacement (legend omitted); D, The mesh h,0; E, Free boundary velocity at the 0th iteration; F, The mesh
h,8; G, Free boundary velocity at the eight iteration; H, The mesh h,20; I, Free boundary velocity at the 20th iteration; J, The mesh h,44; K,
Free boundary velocity at the 44th iteration

with the parameter 𝜏 = 10 and while using the same universal mesh over the unit circle Ω. The images only show a rep-
resentative few iterates and not the entire sequence {Γk}k. In Figure 10A, notice that the algorithm computes a sequence
of approximately circular free boundary iterates when starting from a circular initial guess. This is to be expected, thanks
to the symmetries in the problem and the initial data, and it is reassuring to see this feature being preserved in the solu-
tion iterates as well. Additional details of the simulation corresponding to Figure 10B are provided in Figures 10D to 10K.
These images show snapshots of the computed meshes h,k and the velocity of free boundary estimated at corresponding
time instants. A three-dimensional rendering of the final solution is shown in Figure 10C.

Evolution of the shape functional and its derivative. Figure 11A shows the evolution of the functional J10(Γk) with
the number of iterations k when starting from each one of the four initial guesses in Figure 9. In each case, the shape
functional values converge to the correct one J10(Γ) = 2.75763 within about 20 iterations. Correspondingly, the shape

394 SHARMA AND RANGARAJAN

 2.8

 3

 3.2

 3.4

 3.6

 0 10 20 30 40

Initial guess 1

Initial guess 2

Initial guess 3

Initial guess 4

Iterations (k)
(A)

-4

-2

 0

 0 10 20 30 40

Initial guess 1

Initial guess 2

Initial guess 3

Initial guess 4

Iterations (k)
(B)

FIGURE 11 Convergence of shape functional values (left) and shape derivatives (right) with the number of iterations in Algorithm 1 for
the example in Section 5.3 when starting from each one of the four initial guesses in Figure 9. The monotonic decrease in J𝜏 and the strictly
nonpositive values of its shape derivative evident from the plots are direct consequences of the ansatz in Equation (19) for the free boundary
velocity [Colour figure can be viewed at wileyonlinelibrary.com]

derivative along the direction of the velocity computed in the algorithm approaches zero as seen in Figure 11B, indicating
convergence of the free boundary iterates. It is not a coincidence that the shape derivative values plotted in the figure
are all nonpositive. The choice of the free boundary velocity discussed in Section 3.3 guarantees this. The monotonic
decrease in the shape functional observed in Figure 11A is, in turn, a direct consequence of maintaining a nonpositive
shape derivative and a sufficiently small time step.

Error in discrete solutions and convergence with mesh size. Next, we inspect the error in computed free bound-
aries and their dependence on the initial guess Γ0, the parameter 𝜏, and on the mesh size h. We measure the error in the
solution iterate Γk with the metrics denoted by Erms(Γk) and EL2(Γk). The first error metric is the root mean square of the
distances of vertices lying on Γk from the exact solution Γ

Erms(Γk) ≜
(

1
#vertices in Γh,k

∑
vertex i∈Γh,k

‖xi − ΠΓ(xi)‖2

)2

, (26)

where xi is the Cartesian coordinates of vertex i lying on Γk and ΠΓ(xi) is the closest point projection of xi onto Γ. The
second error metric measures the deviation of Γk from Γ in an L2 sense instead

EL2(Γk) ≜
⎛⎜⎜⎜⎝ ∫

x∈Γh,k

‖x − ΠΓ(x)‖2 ds
⎞⎟⎟⎟⎠

1∕2

. (27)

In both Equations (26) and (27), the discretized version Γh,k serves as a proxy for Γk. In Equation (26), vertices on Γh,k
sample Γk when computing the root mean square error, while in Equation (27), edges in Γh,k facilitate straightforward
evaluation of the integral error measure.

Figure 12A lists the errors in the free boundary computed by Algorithm 1 when starting from each one of the initial
guesses in Figure 9, with all other parameters (𝜏 = 10 and h) being common. Figure 12B reports the errors for a
combination of initial guesses and 𝜏 values while using the same universal mesh. We observe that the location of the free
boundary is computed within a small fraction of the mesh size, ie, the accuracy of the free boundary is not limited to h, but
is roughly two orders of magnitude smaller than it. In Figure 12C, we inspect the convergence of the error in the free
boundary with the mesh size. For this purpose, we use a fixed time step without backtracking in Algorithm 1 so that free
boundaries computed with progressively refined meshes can be compared at the same final time instant. We scale the
time step linearly with the mesh size while maintaining the end time fixed. Hence, the number of descent iterations scales
inversely with the mesh size. From the data, it appears that the error converges at least linearly with the mesh size.

http://wileyonlinelibrary.com

SHARMA AND RANGARAJAN 395

(A) (B)

(C)

FIGURE 12 Tables (A) and (B) demonstrate insensitivity of the free boundary computed by Algorithm 1 to the choice of the initial guess
and to the parameter 𝜏, while (C) demonstrates convergence of the free boundary with mesh refinement. A, Insensitivity to the initial guess;
B, Insensitivity to the choice of parameter 𝜏; C, Convergence of the free boundary with mesh refinement in Algorithm 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

5.4 Circular membrane in contact with a spherical obstacle
Next, we consider the example of a loaded circular membrane in contact with a spherical obstacle introduced in
Section 2.2. With parameters chosen according to Equation (5), the exact solution for the free boundary is a circle of radius
exp(−1) concentric with the membrane. We repeat the investigations performed in the previous example and summarize
the results in Figure 13. Figure 13A shows the evolution of free boundary iterates when starting from the initial guess
depicted in Figure 9D. The computed three-dimensional solution is rendered in Figure 9C and details of intermediate
iterations from the simulation are shown in Figures 13D to Figure 13K. Figure 13B shows the convergence of the shape
functional and its derivative with the number of iterations in Algorithm 1 when starting from each one of the four initial
guesses in Figure 9. As we observed previously in Figure 11, the value of the shape functional decreases monotonically and
converges within about 20 iterations, while its shape derivative remains nonpositive and converges to zero. Figures 13L
and 13M demonstrate the insensitivity of the algorithm to the initial guess and to the parameter 𝜏. In Figure 13N, we
examine the convergence of the computed free boundary to the exact one with mesh refinement. The specific simulation
parameters used in the convergence study are identical to those used in the previous example in Section 5.3. We draw
attention to the fact that the error EL2 at h = 5∕256 is roughly four times smaller than that at h = 5∕128, which suggests
that the error in the free boundary converges quadratically with the mesh size.

5.4.1 Comparison with the variational inequality approach
We use this example to compare the accuracy of Algorithm 1 with the conventional approach of first computing the
displacement of the membrane by resolving a variational inequality and identifying the coincidence set a posteriori.
Specifically, we first compute

uh ≜ arg min
w∈Kh

E[vh], where

{
E[vh] = ∫Ω

(
1
2
∇vh · ∇vh − 𝑓vh

)
,

Kh = {vh ∈ Vh ∶ v(xa) ≤ 𝜓(xa)} ,
(28)

Vh is the finite element space of continuous piecewise linear functions defined over the triangulation h of Ω that vanish
on 𝜕Ω, and {xa}a are the vertices (nodes) in the mesh h. The mesh h used for this calculation is shown in Figure 14A,
where the mesh size h is approximately 5∕64. Notice that the set of admissible solutions Kh is convex but not linear. As
we highlighted in the discussions in Section 1, constructing Kh requires imposing as many constraints as the number of
degrees of freedom in the problem.

To resolve Equation (28), we use the active set semismooth method68 implemented in the PETSc library.69 The algorithm
is iterative, with each iteration consisting in resolving a linear system of equations, followed by an update of the active set of
constraints. In this particular example, we find that the solution converges in 11 iterations. Figure 14B shows the contours
of the computed solution uh. Contours of the function (uh − 𝜓) are plotted in Figure 14C. Notice that the set of points
where (uh − 𝜓) = 0 is the predicted coincidence set Ch. Evidently, it is necessary to choose a tolerance for identifying Ch,

http://wileyonlinelibrary.com

396 SHARMA AND RANGARAJAN

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40
-80

-60

-40

-20

 0

Initial guess 1

Initial guess 2

Initial guess 3

Initial guess 4

Iterations (k)

(A) (B) (C)

(L) (M) (N)

(D) (E) (F) (G)

(H) (I) (J) (K)

FIGURE 13 Details of the numerical experiment discussed in Section 5.4 simulating contact between a circular membrane and a spherical
obstacle. Images (D) to (K) show details of intermediate iterations from the simulation in (A). A, Evolution of free boundary iterates when
starting from the initial guess in Figure 9D; B, Convergence of the functional J𝜏 and its shape derivative with number of the iterations in
Algorithm 1 when starting from each of the initial guesses in Figure 9; C, Three-dimensional rendering of the computed deformation of the
membrane; D, The mesh h,0; E, Free boundary velocity at the 0th iteration; F, The mesh h,12; G, Free boundary velocity at the 12th iteration;
H, The mesh h,16; I, Free boundary velocity at the 16th iteration; J, The mesh h,50; K, Free boundary velocity at the 50th iteration;
L, Insensitivity of the computed free boundary to the choice of initial guess; M, Insensitivity of the computed free boundary to the parameter 𝜏;
N, Convergence of the error in the free boundary with mesh refinement in Algorithm 1 [Colour figure can be viewed at wileyonlinelibrary.com]

at least to account for calculations being performed with finite precision. We do not delve into the details of how to choose
such tolerances.25,26,70 Instead, we simply examine the consequences of choosing a broad range of tolerances. Setting

C𝛿

h ≜ {x ∈ Ω ∶ uh(x) > 𝜓(x) − 𝛿} , (29)

Figure 14C shows the free boundary 𝜕C𝛿

h for the choices 𝛿 = h, h∕101, h∕102, h∕103, h∕106. The last image in Figure 14C
shows the free boundary computed at the end of 20 iterations of Algorithm 1 when using h shown in Figure 14A as the
universal mesh. Comparing it with the previous five images in Figure 14C unequivocally reveals the benefit of computing
the free boundary directly as we have proposed here, rather than computing it a posteriori from the membrane deflection.

http://wileyonlinelibrary.com

SHARMA AND RANGARAJAN 397

(A) (B) (C)

(D)

FIGURE 14 Comparison of the shape optimization-based approach for computing the free boundary in Algorithm 1 with the
conventional approach of first computing the membrane displacement by resolving a variational inequality and then determining the free
boundary a posteriori for the example in Section 5.4. The second row of images show the free boundaries predicted with specific choices of
the tolerance parameter 𝛿 in Equation (29). These predictions should be compared with the last image showing the free boundary computed
at the end of 20 iterations of Algorithm 1 while using the triangulation in (A) as the universal mesh. A, Mesh used for computing membrane
displacements using the variational inequality approach in Equation (28); B, Contours of the solution uh of Equation (28); C, Contours of the
function uh − 𝜓 , whose zero level set defines the coincidence set; D, Recovering the free boundary location from the computed membrane
displacement uh. The first five images show the predictions resulting from a range of choices for the tolerance 𝛿, while the sixth image shows
the free boundary computed by Algorithm 1

Before proceeding, we mention that the comparison shown in Figure 14 should be interpreted with some caution. It is
well known that due to the limited regularity of membrane deflections, it is necessary to adaptively refine the mesh in
the vicinity of the free boundary when resolving obstacle problems as variational inequalities. We have not considered
any such refinement here. Nevertheless, the comparison is also fair in the sense that the same mesh used for resolving
Equation (28) also serves as the universal mesh for Algorithm 1. Moreover, the computational cost of the semismooth
active set method is comparable with that of Algorithm 1. Iterations over the active set of constraints in the former are
replaced by iterations for the free boundary location in the latter. Finally, we mention that problematic issues in identi-
fying the free boundary from membrane displacements that we have highlighted through this example is not specific to
calculations with piecewise linear finite elements but is generally symptomatic of methods that identify the free boundary
a posteriori from approximate membrane displacements.

5.5 Square-shaped membrane in contact with a flat obstacle
Next, we consider an example from Braess et al71 that consists of a square-shaped membrane Ω = (−1.5, 1.5)2 loaded by
a constant force f = 2 and subject to Dirichlet boundary conditions

u(x) = ||x||2∕2 − log ||x|| − 1∕2 along 𝜕Ω.

398 SHARMA AND RANGARAJAN

(A) (B)

FIGURE 15 Simulating the contact of a square-shaped membrane with a flat obstacle. The left image shows the triangulated
noncoincidence set computed by Algorithm 1 and the exact location of the free boundary indicated by a dashed red line. The image on the
right depicts a three-dimensional rendering of the computed deformation of the membrane

The membrane is in contact with a flat obstacle with height function 𝜓 = 0. Unlike the examples in Sections 5.3 and 5.4,
the Dirichlet boundary condition here is nonhomogeneous. The exact solution to this problem is

u(x) =

{||x||2∕2 − log ||x|| − 1∕2, if ||x|| ≥ 1,
0, otherwise,

and the free boundaryΓ is the unit circle centered at the origin of coordinates. For the sake of conformity with Braess et al,71

we consider the contact constraint u ≥ 𝜓 in this example rather than u ≤ 𝜓 that we have assumed thus far. In the
simulation, we use the triangulation shown in Figure 9A as the universal mesh and set 𝜏 = 10. Figure 15A shows the
exact free boundary in red and the converged noncoincidence set (triangulated domain). We find the errors in the location
of the free boundary to be Erms = 0.0078 and EL2 = 0.019, which are much smaller than the mesh size h ≈ 1∕16. We
highlight that such accuracy is despite the coarseness of the universal mesh used and the lack of any mesh adaptivity in the
vicinity of the free boundary. These observations stand out when compared with variational inequality-based approaches
that resolve this problem by computing u as the primal unknown while using extensive mesh refinement despite the lack
of any special features in either u or Γ.71

5.6 Circular membrane in contact with a cylindrical obstacle
In this final example, we consider the circular membrane from the examples in Sections 5.4 and 5.5 to be loaded by a
constant force f = 5 and to be in contact with a cylindrical obstacle. The height function of the obstacle is

𝜓(x, 𝑦) = Z −
√
𝜌2 − 𝑦2, (30)

where 𝜌 = 2.5 is the radius of the cylinder, Z = 2.75 is the height of the axis of the cylinder above the plane of the
membrane, and (x, y) denotes the Cartesian coordinates of a point in Ω. The axis of the cylinder is parallel to the plane of
Ω.

Figure 16A shows the converged solution for the free boundary, while Figures 16B and 16C show three-dimensional
renderings of the deformation of the membrane over the noncoincidence set. In all our previous examples, the inter-
face between the obstacle and the deformed membrane was planar. In contrast, here, we find that the image of the free
boundary on the deformed membrane is nonplanar. Curiously, we also find that the computed free boundary is very well
approximated by an ellipse. We have verified this observation for various combinations of the parameters f,Z, and 𝜌. For
instance, the free boundary depicted in Figure 16A has semimajor and semiminor axes approximately equal to 0.668
and 0.562, respectively. We are not aware of any analytical solutions to this problem and hope that this observation fuels
further investigations.

SHARMA AND RANGARAJAN 399

(A) (B) (C)

FIGURE 16 Simulating contact of a circular membrane with a cylindrical obstacle. The converged free boundary is shown on the left.
Three-dimensional renderings of the deformed membrane are shown in (B) and (C). Notice that the image of the free boundary in the
deformed membrane is nonplanar [Colour figure can be viewed at wileyonlinelibrary.com]

6 CONCLUDING REMARKS

We have described an algorithm for simulating the obstacle problem by considering the free boundary to be the primary
unknown. Such an approach has clear algorithmic benefits over conventional methods based on resolving variational
inequalities, with the most prominent ones being the lack of any inequality constraints and the far superior accuracy
possible in computing the region of contact. We discussed various aspects of the algorithm in detail and demonstrated
its performance with numerous examples. It is certainly possible to conceive of ways to combine our shape optimization
approach with other algorithms. For instance, the solution computed using a penalty formulation can be “polished” with
the algorithm proposed here.

A crucial aspect of the proposed algorithm that is left open in this article concerns the analysis of the error in the
computed free boundary and its convergence to the exact solution with refinement of the universal mesh. While the
examples in Sections 5.3 and 5.4 clearly confirm convergence, it is premature to speculate any further. Presumably, the
error in the computed free boundary depends on a combination of factors- the mesh size, the time step, the accuracy of
fluxes of the displacement and its adjoint computed along the free boundary, and on the representation adopted for the free
boundary. A detailed examination of each of these factors is beyond the scope of this article but is important nonetheless.

It remains to be seen whether the approach adopted here can be extended to problems of contact between plates/shells
with rigid obstacles or even to the Signorini problem. While many of the techniques used here will presumably be applica-
ble verbatim, we expect the question of identifying a suitable shape functional to be the key challenge. In this context, we
highlight an interesting perspective provided by Donaldson and Wetton,72 who recommend computing the free bound-
ary velocity based on certain unbalanced residuals. Although there may not exist a shape functional underlying such a
choice, the idea appears to work well in practice.

ACKNOWLEDGEMENT

This work was supported by the Science and Engineering Research Board under grant ECR/2017/000346.

ORCID

Ramsharan Rangarajan http://orcid.org/0000-0001-7403-7728

REFERENCES
1. Lions J, Stampacchia G. Variational inequalities. Commun Pure Appl Math. 1967;20(3):493-519.
2. Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. Cambridge, MA: Academic Press; 1980.
3. Rodrigues J-F. Obstacle Problems in Mathematical Physics. Amsterdam, The Netherlands: Elsevier; 1987.
4. Elliott CM, Ockendon JR. Weak and Variational Methods for Moving Boundary Problems. London, UK: Pitman Publishing; 1982.
5. Baiocchi C, Capelo A. Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. New York, NY: John Wiley

& Sons; 1984.
6. Crank J. Free and Moving Boundary Problems. Oxford, UK: Oxford Science Publications; 1987.
7. Glowinski R, Lions JL, Trémolières R. Numerical Analysis of Variational Inequalities. New York, NY: Elsevier; 2011.

http://wileyonlinelibrary.com
http://orcid.org/0000-0001-7403-7728
http://orcid.org/0000-0001-7403-7728

400 SHARMA AND RANGARAJAN

8. Ciarlet PG. The finite element method for elliptic problems. Class Appl Math. 2002;40:1-511.
9. Mosco U, Strang G. One-sided approximation and variational inequalities. Bull Am Math Soc. 1974;80(2):308-312.

10. Scholz R. Numerical solution of the obstacle problem by the penalty method. Computing. 1984;32(4):297-306.
11. Johnson C. Adaptive finite element methods for the obstacle problem. Math Model Methods Appl Sci. 1992;2(04):483-487.
12. Tran G, Schaeffer H, Feldman WM, Osher SJ. An L1 penalty method for general obstacle problems. SIAM J Appl Math.

2015;75(4):1424-1444.
13. Brezzi F, Hager WW, Raviart PA. Error estimates for the finite element solution of variational inequalities. Numer Math. 1978;31(1):1-16.
14. Gustafsson T, Stenberg R, Videman J. Mixed and stabilized finite element methods for the obstacle problem. SIAM J Numer Anal.

2017;55(6):2718-2744.
15. Ito K, Kunisch K. An augmented Lagrangian technique for variational inequalities. Appl Math Optim. 1990;21(1):223-241.
16. Simo JC, Laursen TA. An augmented Lagrangian treatment of contact problems involving friction. Comput Struct. 1992;42(1):97-116.
17. Lewy H, Stampacchia G. On the regularity of the solution of a variational inequality. Commun Pure Appl Math. 1969;22(2):153-188.
18. Brézis H, Kinderlehrer D, Lewy H. The smoothness of solutions to nonlinear variational inequalities. Indiana Univ Math J.

1974;23(9):831-844.
19. Brezzi F, Hager WW, Raviart PA. Error estimates for the finite element solution of variational inequalities. Numer Math.

1977;28(4):431-443.
20. Wang L. On the quadratic finite element approximation to the obstacle problem. Numer Math. 2002;92(4):771-778.
21. Chen Z, Nochetto RH. Residual type a posteriori error estimates for elliptic obstacle problems. Numer Math. 2000;84(4):527-548.
22. Nochetto RH, Siebert KG, Veeser A. Pointwise a posteriori error control for elliptic obstacle problems. Numer Math. 2003;95(1):163-195.
23. Lee P, Kim TW, Kim S. Accurate and efficient numerical solutions for elliptic obstacle problems. J Inequalities Appl. 2017;2017(1):34.
24. Brezzi F. Recent results in the approximation of free boundaries. In: Equadiff 6: Proceedings of the International Conference on Differential

Equations and Their Applications, Held in Brno, Czechoslovakia, Aug. 26-30, 1985. Berlin, Germany: Springer; 1986:285-289.
25. Brezzi F, Caffarelli LA. Convergence of the discrete free boundaries for finite element approximations. RAIRO Anal Numér.

1983;17(4):385-395.
26. Nochetto RH. A note on the approximation of free boundaries by finite element methods. ESAIM Math Model Numer Anal.

1986;20(2):355-368.
27. Kinderlehrer D, Nirenberg L. Regularity in free boundary problems. Ann Scuola Norm Super Pisa Cl Sci. 1977;4(2):373-391.
28. Caffarelli LA. The obstacle problem revisited. J Fourier Anal Appl. 1998;4(4-5):383-402.
29. Petrosyan A, Shahgholian H, Uraltseva N. Regularity of Free Boundaries in Obstacle-Type Problems. Providence, RI: American Mathematical

Society; 2012. Graduate Studies in Mathematics.
30. Haslinger JT, Kunisch K, Peichl G. Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli

type. Comput Optim Appl. 2003;26(3):231-251.
31. Eppler K, Harbrecht H. Efficient treatment of stationary free boundary problems. Appl Numer Math. 2006;56(10-11):1326-1339.
32. Bogomolny A, Hou JW. Shape optimization approach to numerical solution of the obstacle problem. Appl Math Optim. 1984;12(1):45-72.
33. Rangarajan R, Lew AJ. Universal meshes: a method for triangulating planar curved domains immersed in nonconforming meshes. Int J

Numer Methods Eng. 2014;98(4):236-264.
34. Rangarajan R, Lew AJ. Analysis of a method to parameterize planar curves immersed in triangulations. SIAM J Numer Anal.

2013;51(3):1392-1420.
35. Rangarajan R, Lew AJ. Provably robust directional vertex relaxation for geometric mesh optimization. SIAM J Sci Comput.

2017;39(6):A2438-A2471.
36. Majava K, Tai XC. A level set method for solving free boundary problems associated with obstacles. Int J Numer Anal Model.

2004;1(2):157-171.
37. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng.

2003;192(1-2):227-246.
38. Allaire G, Dapogny C, Frey P. Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng.

2014;282:22-53.
39. Pironneau O. Optimal Shape Design for Elliptic Systems. New York, NY: Springer-Verlag; 2012.
40. Haslinger J, Hlaváček I, Nečas J. Numerical methods for unilateral problems in solid mechanics. Handb Numer Anal. 1996;4:313-485.
41. Fancello EA, Haslinger J, Feijoo RA. Numerical comparison between two cost functions in contact shape optimization. Struct Optim.

1995;9(1):57-68.
42. Fulmański P, Laurain A, Scheid JF, Sokołowski J. A level set method in shape and topology optimization for variational inequalities. Int

J Appl Math Comput Sci. 2007;17(3):413-430.
43. Seifert U. Configurations of fluid membranes and vesicles. Adv Phys. 1997;46(1):13-137.
44. Dasgupta S, Auth T, Gompper G. Nano-and microparticles at fluid and biological interfaces. J Phys Condens Matter. 2017;29(37):373003.
45. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21(4):419-424.
46. Huang C, Zhang Y, Yuan H, Gao H, Zhang S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett.

2013;13(9):4546-4550.

SHARMA AND RANGARAJAN 401

47. Dasgupta S, Auth T, Gompper G. Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter. 2013;9(22):5473-5482.
48. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci. 2005;102(27):9469-9474.
49. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift Naturforschung C. 1973;28(11-12):693-703.
50. Shi W, Feng XQ, Gao H. Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech Sin. 2006;22(6):529-535.
51. Rangarajan R, Gao H. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: optimal

parameterization, variational formulation and applications. J Comput Phys. 2015;297:266-294.
52. Carey GF, Chow SS, Seager MK. Approximate boundary-flux calculations. Comput Methods Appl Mech Eng. 1985;50(2):107-120.
53. Nocedal J, Wright SJ. Numerical Optimization. New York, NY: Springer Science+Business Media; 2006. Springer Series in Operations

Research and Financial Engineering.
54. Arroyo M, Ortiz M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods.

Int J Numer Methods Eng. 2006;65(13):2167-2202.
55. Arroyo M, Ortiz M. Local Maximum-Entropy Approximation Schemes. New York, NY: Springer; 2007:1-16.
56. Dapogny C, Frey P. Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo.

2012;49(3):193-219.
57. Calakli F, Taubin G. SSD: smooth signed distance surface reconstruction. Comput Graph Forum. 2011;30(7):1993-2002.
58. Sokolowski J, Zolesio J-P. Introduction to Shape Optimization: Shape Sensitivity Analysis. Berlin, Germany: Springer-Verlag Berlin

Heidelberg; 1992;5-12.
59. Conway JB. Functions of One Complex Variable I. New York, NY: Springer Science+Business Media; 1978.
60. Carey GF. Some further properties of the superconvergent flux projection. Commun Numer Methods Eng. 2002;18(4):241-250.
61. Pehlivanov AI, Lazarov RD, Carey GF, Chow SS. Superconvergence analysis of approximate boundary-flux calculations. Numer Math.

1992;63(1):483-501.
62. Höllig K. Finite Element Methods With B-Splines. Vol. 26. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2003.
63. Shewchuk JR. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry Towards

Geometric Engineering: FCRC'96 Workshop, WACG'96 Philadelphia, PA, May 27-28, 1996 Selected Papers. Berlin, Germany: Springer-Verlag
Berlin Heidelberg; 1996;203-222.

64. Rangarajan R, Lew AJ. Parameterization of planar curves immersed in triangulations with application to finite elements. Int J Numer
Methods Eng. 2011;88(6):556-585.

65. Rangarajan R. On the resolution of certain discrete univariate max-min problems. Comput Optim Appl. 2017;68(1):163-192.
66. Rangarajan R, Kabaria H, Lew AJ. An algorithm for triangulating smooth three-dimensional domains immersed in universal meshes. Int

J Numer Methods Eng. 2018. In press.
67. Bern M, Eppstein D, Gilbert J. Provably good mesh generation. J Comput Syst Sci. 1994;48(3):384-409.
68. Benson SJ, Munson TS. Flexible complementarity solvers for large-scale applications. Optim Methods Softw. 2006;21(1):155-168.
69. Balay S, Buschelman K, Gropp WD, et al. PETSc web page. 2018. http://www.mcs.anl.gov/petsc
70. Zhang Y. Convergence of free boundaries in discrete obstacle problems. Numer Math. 2007;106(1):157-164.
71. Braess D, Carstensen C, Hoppe RH. Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer

Math. 2007;107(3):455-471.
72. Donaldson RD, Wetton BR. Solving steady interface problems using residual velocities. IMA J Appl Math. 2006;71(6):877-897.
73. Delfour MC, Zolésio JP. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Philadelphia, PA: Society for

Industrial and Applied Mathematics; 2011.
74. Haslinger J, Makinen RAE. Introduction to Shape Optimization: Theory, Approximation, and Computation. Philadelphia, PA: Society for

Industrial and Applied Mathematics; 2003.

How to cite this article: Sharma A, Rangarajan R. A shape optimization approach for simulating contact of elas-
tic membranes with rigid obstacles. Int J Numer Methods Eng. 2019;117:371–404. https://doi.org/10.1002/nme.5960

APPENDIX

SENSITIVITY OF THE FUNCTIONAL J𝝉
We provide a concise derivation for the sensitivity of the functional J𝜏 . We closely follow the proof of Theorem 7.1 from
Bogomolny and Hou32 and provide intermediate details to keep the explanations self-contained.

http://www.mcs.anl.gov/petsc
https://doi.org/10.1002/nme.5960

402 SHARMA AND RANGARAJAN

We start with a given location for the free boundary Γ and a prescribed velocity V for its evolution. Assuming that V
is extended in a sufficiently smooth manner to Ω such that V = 0 on 𝜕Ω, consider the 1-parameter family of mappings
𝜀 → 𝜑𝜀 defined over Ω as

x → 𝜑𝜀(x) ≜ x + 𝜀V(x), (A1)

and set Γ𝜀 = 𝜑𝜀(Γ). Formally, we are interested in computing

dJ𝜏(Γ;V) ≜ lim
𝜀→0

d
d𝜀

J𝜏(Γ𝜀). (A2)

That dJ𝜏 is well defined in Equation (A2) is proven in Theorem 6.2 in Bogomolny and Hou32 (see also chapter 4 in Delfour
and Zolésio73 for arguments starting from first principles).

As usual, we denote the coincidence and noncoincidence sets corresponding to the free boundary Γ by C and D,
respectively. The analogous sets corresponding to Γ𝜀 shall be denoted by C𝜀 and D𝜀. Hence,

J𝜏(Γ𝜀) = ∫
Ω

(1
2
∇u𝜀 · ∇u𝜀 + (𝜏 − 1)𝑓u𝜀

)
, (A3)

where the states u and u𝜀 satisfy

⎧⎪⎨⎪⎩
−Δu = 𝑓 on D,

u = 0 on 𝜕Ω,
u = 𝜓 on C,

and
⎧⎪⎨⎪⎩
−Δu𝜀 = 𝑓 on D𝜀,

u𝜀 = 0 on 𝜕Ω,
u𝜀 = 𝜓 on C𝜀.

We have assumed homogeneous Dirichlet boundary conditions along 𝜕Ω for the sake of simplicity.
Material and shape derivatives of u. Evidently, we will need the shape derivative of u to evaluate Equation (A2). To

this end, we set U(x, 𝜀) ≜ u𝜀(x + 𝜀V(x)), so that a direct application of the chain rule yields

d
d𝜀

||||𝜀=0
U(x, 𝜀) = 𝜕U(x, 0)

𝜕𝜀
+ ∇U(x, 0) · V(x). (A4)

Permitting a minor abuse of notation, Equation (A4) is more succinctly expressed as

u̇ = u′ + ∇u · V, (A5)

where we identify u̇ to be the material derivative and u′ to be the shape derivative of u. Since the forcing f and the height
function 𝜓 are prescribed, their shape derivatives f ′ and 𝜓 ′ are zero, and hence,

̇𝑓 = ∇𝑓 · V and �̇� = 𝛥𝜓 · V.

We use the definition of u′ in Equation (A5) to deduce the conditions satisfied by it. Exploiting the fact that the shape
derivative and spatial gradients commute and using f ′ = 0, we get

−Δu𝜀 = 𝑓 ⇒ Δu′ = 0 on Ω, (A6)

while on Γ, we have u = 𝜓 ⇒ u̇ = �̇� ⇒ u′ + ∇u · V = ∇𝜓 · V ⇒ u′ = (∇𝜓 − ∇u) · V. Since u = 𝜓 along Γ, the
tangential derivatives of u and 𝜓 along Γ coincide. Therefore,

u′ =
(
𝜕𝜓

𝜕n
− 𝜕u

𝜕n

)
Vn on Γ,

where Vn ≜ V ·n and n is the unit normal to Γ oriented such that it points away fromD. Finally, we note that the boundary
condition u = 0 on 𝜕Ω implies that u′ also vanishes in 𝜕Ω. In this way, we find that u′ ∶ D → R is the solution to the
problem ⎧⎪⎨⎪⎩

−Δu′ = 0 on Ω,
u′ = (𝜕𝜓∕𝜕n − 𝜕u∕𝜕n)Vn on Γ,
u′ = 0 on 𝜕Ω.

(A7)

SHARMA AND RANGARAJAN 403

To proceed, we rewrite Equation (A3) as a sum of integrals over the domains C𝜀 and D𝜀, ie,

J𝜏(Γ𝜀) = ∫
C𝜀

(1
2
∇u𝜀 · ∇u𝜀 + (𝜏 − 1)𝑓u𝜀

)
+ ∫

D𝜀

(1
2
∇u𝜀 · ∇u𝜀 + (𝜏 − 1)𝑓u𝜀

)
≜ JC

𝜏 (Γ𝜀) + JD
𝜏 (Γ𝜀). (A8)

In the following, we compute the sensitivities of JC
𝜏 and JD

𝜏 individually.
Sensitivity of JC

𝜏 . Since u𝜀 = 𝜓 on C𝜀, we have

JC
𝜏 (Γ𝜀) = ∫

C𝜀

(1
2
∇𝜓 · ∇𝜓 + (𝜏 − 1)𝑓𝜓

)
.

By a direct application of the Reynolds transport theorem74 and noting the convention that n is the inward normal to 𝜕C,
we get

d
d𝜀

||||𝜀=0
JC
𝜏 (Γ𝜀) = −∫

Γ

(1
2
||∇𝜓||2 + (𝜏 − 1)𝑓𝜓

)
Vn. (A9)

Sensitivity of JD
𝜏 . A similar application of the transport theorem for JD

𝜏 yields

d
d𝜀

||||𝜀=0
JD
𝜏 (Γ𝜀) = ∫

D

(
∇u′ · ∇u + (𝜏 − 1)𝑓u′) + ∫

𝜕D

(1
2
||∇u||2 + (𝜏 − 1)𝑓u

)
Vn. (A10)

• Recognizing that 𝜕D = 𝜕Ω ∪ Γ, V = 0 on 𝜕Ω, and u = 𝜓 in Γ, we get

∫
𝜕D

(1
2
||∇u||2 + (𝜏 − 1)𝑓u

)
Vn = ∫

Γ

(1
2
||∇u||2 + (𝜏 − 1)𝑓𝜓

)
Vn. (A11)

• To simplify the term ∫D∇u′ · ∇u, we invoke ∇u′ = 0 on D and u = 0 on 𝜕Ω to get

∫
D

∇u′ · ∇u = ∫
D

(
∇ · (u∇u′) − uΔu′) = ∫

𝜕Ω

u𝜕u′

𝜕n
+ ∫

Γ

u𝜕u′

𝜕n
= ∫

Γ

u𝜕u′

𝜕n
. (A12)

• Next, we simplify the term ∫D(𝜏 − 1)𝑓u′. Since −Δu = f and ∇u′ = 0 in D, we have

𝑓u′ = (−Δu)u′ =
(

uΔu′ − u′Δu
)
= ∇ ·

(
u∇u′ − u′∇u

)
in D.

Then, an application of the divergence theorem while noting u = u′ = 0 in 𝜕Ω yields

∫
D

𝑓u′ = ∫
𝜕D

(
u𝜕u′

𝜕n
− u′ 𝜕u

𝜕n

)
= ∫

Γ

(
′ 𝜕u′

𝜕n
− u′ 𝜕u

𝜕n

)
= ∫

Γ

u𝜕u′

𝜕n
− ∫

Γ

𝜕u
𝜕n

(
𝜕𝜓

𝜕n
− 𝜕u

𝜕n

)
Vn. (A13)

Summarizing the calculations from Equations (A11) to (A13) in Equation (A10), we find that

d
d𝜀

||||𝜀=0
JD
𝜏 (Γ𝜀) = ∫

Γ

(
𝜏u𝜕u′

𝜕n
− (𝜏 − 1) 𝜕u

𝜕n

(
𝜕𝜓

𝜕n
− 𝜕u

𝜕n

)
Vn +

(1
2
||∇u||2 + (𝜏 − 1)𝑓𝜓

)
Vn

)
. (A14)

Sensitivity of J𝜏 in terms of u and u′. Adding Equation (A9) and Equation (A14), we get

dJ𝜏(Γ;V) = ∫
Γ

(
𝜏u𝜕u′

𝜕n
+ (𝜏 − 1) 𝜕u

𝜕n

(
𝜕u
𝜕n

− 𝜕𝜓

𝜕n

)
Vn + 1

2
(||∇u||2 − ||∇𝜓||2)Vn

)
. (A15)

404 SHARMA AND RANGARAJAN

As we argued previously,

u = 𝜓 on Γ ⇒ ||∇u||2 − ||∇𝜓||2 =
(
𝜕u
𝜕n

)2
−

(
𝜕𝜓

𝜕n

)2

on Γ.

Therefore, Equation (A15) becomes

dJ𝜏(Γ;V) = ∫
Γ

(
𝜏u𝜕u′

𝜕n
+ (𝜏 − 1) 𝜕u

𝜕n

(
𝜕u
𝜕n

− 𝜕𝜓

𝜕n

)
Vn + 1

2

((
𝜕u
𝜕n

)2
−

(
𝜕𝜓

𝜕n

)2
)

Vn

)
. (A16)

As predicted by the Hadamard structure theorem, the sensitivity dJ𝜏(Γ;V) in Equation (A16) depends only on information
along the free boundary Γ. We also expect dJ𝜏(Γ;V) to depend linearly on Vn. While this is apparent for the second and
third terms on the right-hand side of Equation (A16), we introduce the adjoint state p to elucidate the dependence of first
term (u𝜕u′∕𝜕n) on Vn.

The adjoint state. Let p ∶ D → R be the solution to the problem⎧⎪⎨⎪⎩
−Δp = 0 on D,

p = 𝜓 on Γ,
p = 0 on 𝜕Ω.

(A17)

Since u = 𝜓 = p on Γ, we have

∫
Γ

u𝜕u′

𝜕n
= ∫

Γ

p𝜕u′

𝜕n
.

Then, exploiting the facts that Δu′ = Δp = 0 on D and u′ = p = 0 on 𝜕Ω, we get

∫
Γ

u𝜕u′

𝜕n
= ∫

Γ

p𝜕u′

𝜕n
= ∫

Γ

p𝜕u′

𝜕n
+ ∫

𝜕Ω

p𝜕u′

𝜕n
= ∫

D

∇ · (p∇u′) = ∫
D

(
∇p · ∇u′ + pΔu′)

= ∫
D

(
∇p · ∇u′ + u′Δp

)
= ∫

D

∇ ·
(

u′∇p
)
= ∫

𝜕D

u′ 𝜕p
𝜕n

= ∫
Γ

u′ 𝜕p
𝜕n

+ ∫
𝜕Ω

u′ 𝜕p
𝜕n

= ∫
Γ

𝜕p
𝜕n

u′. (A18)

Since u′ = (𝜕𝜓∕𝜕n − 𝜕u∕𝜕n)Vn on Γ by Equation (A7), Equation (A18) becomes

∫
Γ

u𝜕u′

𝜕n
= ∫

Γ

𝜕p
𝜕n

(
𝜕𝜓

𝜕n
− 𝜕u

𝜕n

)
Vn. (A19)

Finally, substituting Equation (A19) in Equation (A16), we get

dJ𝜏(Γ;V) = ∫
Γ

(
𝜕u
𝜕n

− 𝜕𝜓

𝜕n

)(
1
2

(
𝜕𝜓

𝜕n
+ 𝜕u

𝜕n

)
− 𝜏

𝜕p
𝜕n

+ (𝜏 − 1) 𝜕u
𝜕n

)
Vn,

which is precisely the expression provided in Equation (17) in Section 3.3.

Remarks.

1. The extension of the free boundary velocity V to the entire domain Ω is required only for the purpose of deriving
the sensitivity of the shape functional. In particular, Algorithm 1 does not require any extension of V away from Γ.
Shape optimization algorithms based on advecting level set functions sometimes explicitly require constructing
such extensions.38

2. Equation (A1) is identical to the evolution of the free boundary in Algorithm 1, with the parameter 𝜀 identified
with the time step Δt.

3. Equation (A16) shows how to compute the sensitivity of J𝜏 using the shape derivative u′ rather than using the
adjoint p as we have done in Algorithm 1. The decision to compute p rather than u′ to evaluate the free boundary
velocity is motivated by the close resemblance of the adjoint and the state problems, and the simplicity of the
boundary conditions for p along Γ compared with that for u′. In particular, the state and adjoint problems can be
solved simultaneously, while u′ can be computed only after u.

	A shape optimization approach for simulating contact of elastic membranes with rigid obstacles
	Abstract
	INTRODUCTION
	CHOOSING A SHAPE FUNCTIONAL
	The free boundary problem
	Axisymmetric problems: exact solutions
	A functional with an inflection point
	A functional with multiple stationary points
	Our choice: the functional J with 1

	A GRADIENT DESCENT ALGORITHM FOR COMPUTING THE FREE BOUNDARY
	The algorithm
	Representation and update of free boundary iterates
	Sensitivity of the functional J and the descent direction
	Flux recovery along the free boundary
	A few remarks

	DISCRETIZING EVOLVING DOMAINS WITH UNIVERSAL MESHES
	NUMERICAL EXPERIMENTS
	Choice of universal meshes
	Finite element approximation
	Circular membrane in contact with a flat obstacle
	Circular membrane in contact with a spherical obstacle
	Comparison with the variational inequality approach

	Square-shaped membrane in contact with a flat obstacle
	Circular membrane in contact with a cylindrical obstacle

	CONCLUDING REMARKS
	REFERENCES
	APPENDIX

