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Shape Control for the Elastica
Through Load Optimization
Flexible elastic beams can function as dexterous manipulators at multiple length-scales
and in various niche applications. As a step toward achieving controlled manipulation
with flexible structures, we introduce the problem of approximating desired quasi-static
deformations of a flexible beam, modeled as an elastica, by optimizing the loads applied.
We presume the loads to be concentrated, with the number and nature of their application
prescribed based on design considerations and operational constraints. For each desired
deformation, we pose the problem of computing the requisite set of loads to mimic the tar-
get shape as one of optimal approximations. In the process, we introduce a novel general-
ization of the forward problem by considering the inclinations of the loads applied to be
functionals of the solution. This turns out to be especially beneficial when analyzing
tendon-driven manipulators. We demonstrate the shape control realizable through load
optimization using a diverse set of experiments. [DOI: 10.1115/1.4041678]

1 Introduction

We consider the problem of computing an optimal set of con-
centrated loads acting at prescribed locations along a flexible elas-
tic beam, with the objective of realizing a desired deformed shape
at static equilibrium. Our motivation to study this problem lies in
the context of controlling shapes of flexible arms to serve as
manipulators in robotics applications. Such control helps to trans-
form a passive elastic beam into an active flexible manipulator
that can be used, for instance, to inspect a cluttered environment,
to mimic a grasping pose in an assistive glove, or to steer a mini-
mally invasive medical instrument [1,2].

We presume from the outset that the arm we seek to control is a
slender structure that can undergo large displacements and rota-
tions while incurring small strains. Consequently, linear beam the-
ories are inadequate and a linear relationship between loads and
displacements is unrealistic in the typical regime of operation for
flexible manipulators. Instead, we model the arm as an elastica.
Hence, the material response remains linear, which, in this case,
implies a bending moment proportional to the local curvature. On
the other hand, the kinematics is nonlinear and curvatures are
computed without approximation in the model [3].

The forward problem of computing the deformation of a flexi-
ble arm modeled as an elastica for a prescribed set of loads,
though nonlinear, is reasonably straightforward to resolve. Solu-
tions expressed in terms of elliptic integrals have been derived for
various combinations of loads, moments and boundary conditions
[4–8]. Numerical algorithms to compute approximate solutions,
predominantly based on the shooting method, can be adopted as
well [9–12]. Though these solutions are often presented for an end
load/moment, it is conceivable that the techniques used, especially
the numerical algorithms, can be extended with some tedium to
the case of multiple loads. We revisit the forward problem in
Sec. 2, where we consider loads whose inclinations are general
functionals of the elastica solution. Such a generalization appears
to be novel, and turns out to be very useful for analyzing a broad
class of loading scenarios including tendon-driven manipulators
discussed in Sec. 4, see Fig. 1.

The shape control problem that we introduce in Sec. 3 is more
challenging and seems to have largely escaped attention in the lit-
erature. The main difficulty arises from the prescribed nature of
the loading. To wit, if a distributed loading is permitted, shape

control becomes trivial—for a desired deformation, simply find
the out-of-balance forces/moments required to maintain static
equilibrium. In fact, such a scenario, though unrealistic in prac-
tice, enables any desired deformation to be achieved. In contrast,
we assume the loads to be concentrated, and consider their num-
ber to be finite and their locations to be given. Such restrictions
inevitably arise from application-specific design considerations.
Then, it is not clear if a desired deformation is even achievable. It
is in fact generally the case that a target deformation can only be
approximated and not reproduced exactly. This observation high-
lights that our shape control problem is not just an inverse prob-
lem for the elastica [13,14], but one of optimal approximations.

Our approach to shape control for the elastica consists of posing
an optimization problem, where the parameters we seek are the
loads to be imposed on the arm and the objective functional is
defined to minimize deviations of the realized equilibrium config-
uration from the desired one. The proposed numerical algorithm
for computing these loads falls under the category of ordinary dif-
ferential equation-constrained optimization methods [15], with the
distinctive feature that the underlying state equation is nonlinear.
These aspects clearly distinguish our approach from control algo-
rithms in conventional robotics applications where the kinematics

Fig. 1 An experimental realization demonstrating the manipu-
lation of a flexible polycarbonate beam using three tendon
loads
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mainly involves a combination of algebraic and trigonometric
relationships. We also draw a distinction between the load optimi-
zation problem for shape control introduced here and that of shape
optimization for beams [16], where for example, the thickness or
cross section is tuned to achieve a desired compliance.

We resolve the load optimization problem by explicitly com-
puting sensitivities of elastica solutions to each of the imposed
loads, which in turn helps to identify descent directions in numeri-
cal algorithms used to minimize the objective. In particular, we
provide the equations satisfied by sensitivity fields, and discuss
approximating elastica solutions and their sensitivities with the
finite element method. We also highlight intricacies that arise
when optimizing configuration-dependent loads where the direc-
tion of loading depends explicitly on the solution. In fact, the two
most commonly used types of actuation in flexible robotics,
namely, pressure-driven and tendon-driven mechanisms, fall
under this category.

1.1 Related Literature. It is generally well recognized that
the elastica serves as a useful model for planar flexible manipula-
tors [17–20]. Similarly, in three dimensions, geometrically nonlin-
ear rod models have been adopted to compute the forward
kinematics of robots with slender continuum backbones [21,22],
although simpler models invoking constant curvature approxima-
tions are far more prevalent [23,24]. With the intention of capturing
macroscopic geometric features, conventional (hyperredundant)
robots consisting of a large number of rigid links and actuators
have even been approximated by continuum models such as the
elastica [25]. As illustrated by the study in Ref. [26], however,
drawing analogies between the mechanics of a serpentine hyper-
redundant robot and a continuum arm is an intricate matter.

While we envision employing a flexible arm as a robotic device
by contorting it to a desired shape, other modalities are possible as
well. As considered in Refs. [18] and [27], the arm can be used to
deliver a payload to a desired location. It is possible to induce
snap-through instabilities to harness the rapid release of energy
for devising autonomous behavior [28]. A common theme under-
lying such modalities is the instability of an elastic arch subjected
to a transverse load [29,30]. A snap-through induced by varying
the end conditions transforms the structure into a “catapult” [31].
A similar principle is exploited in pole vaulting as well [32].
Snap-through and pull-in instabilities have also been used for
designing devices in microelectromechanical systems [33].

The method of actuation plays a decisive role in the design and
operation of flexible manipulators [34]. Our work here is targeted
toward controlling tendon-driven arms, which offer the crucial
benefit of isolating the actuation mechanism from the manipulator
itself, thereby making the manipulator light and portable. Among
alternative mechanisms, pneumatic/fluidic actuators are perhaps
the most commonly used [35,36]. In such systems, the pressure
may serve to directly load a flexible structure [18], or can be used
indirectly to induce local instabilities in structured materials that
manifest as macroscopic motions [37]. More recent actuation
mechanisms have explored the use of shape memory alloys [38]
and electroactive polymers [39], with the promise of application
in soft robotics [40].

Inspiration for the type of control we seek to achieve in flexible
manipulators can be drawn from various biological systems [41].
Invoking a broad analogy, ours is an invertebrate structure that
needs to be bent in a desired way. Studies on the locomotion of
snakes [42,43], the flexibility of octopus tentacles and the dexter-
ity of elephant trunks have influenced the design of various biomi-
metic robotic systems [44,45], some of which have been
commercialized [46,47]. As revealed by the materials and actua-
tion mechanisms we consider here, our goal is not biomimicry.
Rather, we seek to realize shapes and deformations that can be
used, if desired, to replicate natural functions.

Besides the implications for flexible robotics, the control prob-
lem we consider is directly relevant to the analysis and design of

guyed columns and cable supported structures [48,49]. Our work
can also be interpreted in the context of curve approximation,
since we seek to approximate a design curve (desired shape) by
certain elastica solutions [50], with the feature of the
approximation parameters having meaningful physical interpreta-
tions. Such curve approximation problems are commonly known
as “rationalization” in the literature on computer-aided design and
have applications in manufacturing processes such as robotic hot
blade cutting [51].

2 The Forward Problem

We devote this section to detailing the forward problem defin-
ing the deformation of an elastica subjected to a collection of con-
centrated loads. The forward problem will serve as a point of
departure for discussing the shape control problem in Sec. 3.

2.1 Kinematics and Equilibrium. We consider an elastica of
length ‘ and bending modulus B that is clamped at its left end. It
is subjected to n point loads fPi 2 Rgn

i¼1, with the load Pi acting
at a distance si measured along the length of the beam from the
clamped end as illustrated in Fig. 2. For definiteness, we set s0¼ 0
and assume that s0 < s1 < s2 < … < sn ¼ ‘. The case where the
nth load acts at sn<‘ is easily accommodated, for instance, by
considering nþ 1 loads and setting snþ1¼ ‘ with Pnþ1¼ 0.
Assuming the elastica to be straight when unloaded, we describe
its deformed configuration with the map s 7!hðsÞ that measures
the inclination of the tangent to the centerline of the beam as a
function of the arc-length parameter s 2 ½0; ‘�. This choice of
coordinate helps to automatically incorporate the familiar inexten-
sibility constraint. Adopting a Cartesian system of coordinates (x,
y) in which the origin coincides with the clamped end and the hor-
izontal axis with the centerline of the beam in its reference config-
uration, the coordinates of a point at a distance s along the
centerline in the deformed configuration are given by

ðxðsÞ; yðsÞÞ ¼
ðs

0

ðcos hðtÞ; sin hðtÞÞ dt (1)

We denote the direction cosines of the jth load by the functionals
ðHj½h�;V j½h�Þ, where the dependence on h permits considering
loads whose inclinations are configuration-dependent. For exam-
ple, ðHj½h�;Vj½h�Þ ¼ ðcos l; sin lÞ for a load acting at a constant
inclination l measured from the horizontal, while ðHj½h�;V j½h�Þ ¼
ð�sin hðsjÞ; cos hðsjÞÞ for a follower load that remains normal to

Fig. 2 Illustration of the choice of coordinates and the loading
configuration for the problem of computing the deformation of
an elastica discussed in Sec. 2
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the beam at sj. In Sec. 4, we provide these functionals for the case
of tendon loads. In the ensuing discussion, however, we do not
assume a specific form for the inclination functionals.

Balancing moments at a point s 2 ðsi; siþ1Þ, we get

Bh0ðsÞ ¼
Xn

j¼iþ1

PjððxðsjÞ � xðsÞÞV j½h� � ðyðsjÞ � yðsÞÞHj½h�Þ

where h0ðsÞ¢dhðsÞ=ds measures the local curvature at s and
0 � i < n. Differentiating the equation above with respect to the
parameter s and invoking the relationship ðx0ðsÞ; y0ðsÞÞ ¼
ðcos hðsÞ; sin hðsÞÞ implied by Eq. (1), we arrive at the force
balance

Bh00ðsÞ ¼
Xn

j¼iþ1

PjðV j½h�cos hðsÞ � Hj½h�sin hðsÞÞ ¼ 0

for si < s < siþ1 and 0 � i < n

(2)

which are augmented with the boundary conditions

hð0Þ ¼ h0ð‘Þ ¼ 0 (3)

signifying that the end s¼ 0 is clamped while the end s¼ ‘ is
moment-free.

Multiplying Eq. (2) by an admissible variation s7!dhðsÞ of h,
integrating by parts, and noting the boundary conditions implied
by Eq. (3) on h and dh, we get the principle of virtual work

Gðh; dhÞ¢
ð‘

s¼0

Bh0dh0 ds

þ
Xn�1

i¼0

Xn

j¼iþ1

ðsiþ1

si

PjðHj½h�sin h� V j½h�cos hÞdh ds

¼ 0 8 dh admissible

(4)

It is evident from the terms cos h and sin h appearing in the inte-
grand that the dependence of G on h in Eq. (4) is nonlinear. The
direction cosines fðHj½h�;V j½h�Þgj may serve as additional sources
of nonlinearity.

2.2 Finite Element Approximation. Equation (4) is the point
of departure for computing finite element approximations to h.
We adopt a piecewise linear discretization for h and resolve the
resulting nonlinear system of equations with a Newton algorithm.
To this end, we compute the directional derivative of Gðh; dhÞ
along s 7!DhðsÞ as

DG h;dhð Þ�Dh¢
d

de
je¼0G hþeDh;dhð Þ

¼
ð‘

s¼0

Bdh0Dh0dsþ
Xn�1

i¼1

Xn

j¼iþ1

ðsiþ1

si

Pj Hj h½ �coshþV j h½ �sinh
� �

dhDhds

þ
Xn�1

i¼1

Xn

j¼iþ1

ðsiþ1

si

Pj H0j h;Dhð Þsinh�V0j h;Dhð Þcosh
� �

dhds

(5)

where we have used the shorthand ðH0jðh; DhÞ;V0jðh; DhÞÞ for the
directional derivatives DðHj½h�;V j½h�Þ � Dh. For example,
ðH0jðh; DhÞ;V0jðh; DhÞÞ equals (0, 0) for a nonfollower load (e.g.,
dead load), while

ðH0jðh; DhÞ;V0jðh; DhÞÞ ¼ �ðcos hðsjÞ; sin hðsjÞÞDhðsjÞ (6)

for a follower that remains normal to the beam at sj.
A consistent linearization Dh 7!LGðh; dhÞðDhÞ of Eq. (4) suita-

ble for a Newton-algorithm now follows as

LGðh; dhÞðDhÞ¢Gðh; dhÞ þ DGðh; dhÞ � Dh (7)

Hence, starting from an initial guess s 7!h0ðsÞ, we adopt an itera-
tive procedure where at the kth iteration, we compute the solution
increment Dhk by resolving the affine system

LGðhk; dhÞðDhkÞ ¼ 0 8 dh admissible (8)

coupled with the Dirichlet boundary condition Dhkð0Þ ¼ 0.
Restricting the solution iterate hk, the admissible variations dh and
the solution increment Dhk to belong to the finite element space
transforms Eq. (8) into a linear system of algebraic equations.
Then with Dhk at hand, we update the solution guess to hkþ1 ¼
hk þ Dhk and continue iterating in this way until the residual G is
deemed to be sufficiently small.

2.3 Remarks. Observe that since the finite element residual
vector and stiffness matrix furnished by Eq. (7) are in general
configuration-dependent, it is necessary to reassemble them after
each solution iteration. In practice, neither the linearization LG in
Eq. (7) nor the solution increment Dh in Eq. (8) need to be com-
puted accurately; the satisfaction of equilibrium conditions and
the termination of the numerical algorithm only require that G be
evaluated well. In particular, it is beneficial to drop terms of the
form PjðH0jðh; DhÞsin h� V0jðh; DhÞcos hÞ appearing in the inte-
grand in Eq. (5) since their inclusion can result in a dense and
nonsymmetric stiffness matrix. This is in fact the case for tendon-
driven loads discussed in Sec. 4. Due to the piecewise nature of
the force balance statement, which manifests as partitioned inte-
grals in Eq. (4), we ensure that the points s1;…; sn are included in
the set of nodes in the finite element mesh in order to simplify the
choice of quadrature rules for numerically evaluating the integrals
appearing in G and its linearization. Finally, we mention that the
straightforward Newton algorithm that we adopt here is unsuitable
for computing solutions when there is a possibility of snap-
through or buckling phenomena. In such cases, arc-length meth-
ods and path-following strategies are more appropriate. Since
none of the examples considered in this paper involve such insta-
bilities, we omit a discussion of these alternative algorithms and
refer to Ref. [52] instead.

2.4 Examples and Comparisons With the Literature. We
show a few examples in Fig. 3 comparing our finite element
approximations of elastica solutions with those available in the lit-
erature. In Figs. 3(a)–3(c), we compare our calculations with
elliptic integral-based solutions from Refs. [4], [5], and [53],
respectively. We present similar comparisons for the case of ten-
don loads (Sec. 4). While there is no limitation in our numerical
algorithm on either the number or the locations of the loads, ellip-
tic integral-based solutions are invariably derived for the case of
end loads. Elliptic integral solutions for the case of multiple loads
can be found in Ref. [5] for example. We have compared our cal-
culations with these solutions as well but omit them here for the
sake of brevity. Instead, Fig. 3(d) shows a comparison of our finite
element calculations with the shooting method [10]. We have
included the case of a follower load in Fig. 3(c) solely for the pur-
pose of verifying the correctness of our implementation. In partic-
ular, we do not consider such loads to be a feasible means of
operating flexible manipulators [54].

We conclude this section by mentioning that the general formu-
lation for the forward problem in Eq. (4) and its linearization
using Eq. (5) helps to reproduce a variety of solutions that have
been derived in the literature. The benefit of such generality will
become more evident when we consider the case of tendon loads
in Sec. 4.

3 Shape Control Through Load Optimization

The stage is now set for us to introduce the shape control prob-
lem. From the outset, we assume that the number of loads n, their
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locations fsjgn
j¼1 and the nature of the loads in the form of the

inclination functionals fðHj;V jÞgn
j¼1 are specified. We presume

these to be the result of design considerations and operational con-
straints. Then, given a desired configuration s 7!hdðsÞ for the elas-
tica, our goal in this section is to identify a set of loads
P ¼ ðP1;…;PnÞ 2 Rn that yields an equilibrium solution hP to
approximate hd well. The manipulator design specifications, i.e.,
the parameters n, fsigi and fðHi;ViÞgi remain unchanged irre-
spective of the prescription for hd. Instead, the only control avail-
able to approximate the desired configuration is the set of loads P.

The subscript P appearing in hP, not used in Sec. 2, is intro-
duced here to serve as a reminder of the dependence of the elas-
tica solution on the set of loads, which is the basis for the shape
control problem. We note that the desired configuration can also
be specified in the form of coordinate functions s 7!ðxdðsÞ; ydðsÞÞ,

from where it is straightforward to deduce hd using the relation-
ship ðx0dðsÞ; y0dðsÞÞ ¼ ðcos hdðsÞ; sin hdðsÞÞ.

3.1 Objective Functional. By way of posing the question of
finding P as an optimization problem, we introduce the objective
functional

J Pð Þ¢ 1

2

ð‘
s¼0

hP sð Þ � hd sð Þð Þ2 ds (9)

where the dependence of J(P) on P is implicit in hP. Evidently,
J(P) is the squared L2-norm of the difference ðhP � hdÞ between
the realized and the desired solutions computed over ½0; ‘�. Our
goal is hence to identify P as a minimizer of J. Although each

Fig. 3 Plots (a)–(c) compare our finite element approximations of elastica solutions with elliptic integral-based solutions
derived in the literature. Plot (d) shows a comparison with an alternative numerical method.

Fig. 4 With the manipulator shown in (a) designed with one end vertical load, we seek a load P that approxi-
mates a given target deformation (hd) as an elastica solution. Plots (b) and (c) show the approximation achieved
by computing optimal loads as outlined in Sec. 3.2 to approximate target inclinations of the form hd 5 bs(s22).
While (b) compares the functions hd(s) and hP(s), (c) compares the corresponding set of deformations. For the
specific case of b 5 1, details of the convergence of the load optimization scheme to a minimizer of the objective
functional are shown in (d) and (e). The algorithm terminates after 8 iterations, when the sensitivity jdJ /dPj
becomes smaller than the specified tolerance 10210.
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choice for hd defines a new objective, for notational simplicity, we
have omitted denoting the dependence of J on hd explicitly.

The form of the objective in Eq. (9) is chosen for its simplicity.
Needless to say, other definitions are certainly possible. In particu-
lar, we draw attention to the fact that although the dependence of
J on hP is quadratic in Eq. (9), its dependence on P may not be
(see Fig. 4(d)). For this reason, we cannot make claims on the
existence/uniqueness of minimizers for J and rely on a posteriori
comparison of hP and hd to infer if the identified solution P is
indeed a minimizer.

3.2 Optimal Loads as a Stationary Point of J. Seeking a
stationary point of J, we formally set @JðPÞ=@Pk ¼ 0 for each
k ¼ 1;…; n. More succinctly, we require that

rPJ Pð Þ¢ @J Pð Þ
@P1

;…;
@J Pð Þ
@Pn

� �
¼ 0

Employing the definition of J from Eq. (9), we have

@J Pð Þ
@Pk

¼
ð‘

s¼0

hP sð Þ � hd sð Þð Þ
@hP sð Þ
@Pk|fflfflffl{zfflfflffl}
ak sð Þ

ds (10)

The derivative akðsÞ¢@hPðsÞ=@Pk appearing in Eq. (10) is the
sensitivity of the elastica solution to the load Pk, i.e., ak is a mea-
sure of how the elastica solution changes when the load Pk is per-
turbed. In summary, with a¢ða1;…; anÞ, we seek P 2 Rn that
satisfies

rPJðPÞ ¼
ð‘

s¼0

ðhPðsÞ � hdðsÞÞ aðsÞ ds ¼ 0 (11)

The integrand in Eq. (11) depends on P through the elastica solu-
tion hP as well as through the set of sensitivities a. We have omit-
ted explicitly indicating the dependence of a on P, unlike in the
case of hP, to avoid indicial clutter.

With Eq. (11) at hand, the question of identifying the optimal
load P reduces to a problem in numerical optimization. In princi-
ple, a simple gradient descent scheme will suffice—starting from
an initial guess P0, iteratively improve solution guesses using
updates of the form Pmþ1 ¼ Pm � cmrPJðPmÞ, where cm is an
iteration dependence scale factor chosen to be sufficiently small to
ensure that JðPmþ1Þ � JðPmÞ. It is also appealing to choose a
Newton algorithm to resolve Eq. (11), but such a scheme requires
expensive calculations of higher order sensitivities (derivatives of

the form @2hP=@Pk@Pj). We resort to a quasi-Newton method
instead, where the Hessian of J is computed approximately using
its gradients. Specifically, we use the Broyden–Fletcher–
Goldfarb–Shanno algorithm implemented in the Toolkit for
Advanced Optimization library [55]. We mention the possibility
of adopting derivative-free algorithms such as the Nedler–Mead
method for minimizing J, in which case the gradient rPJðPÞ, and
consequently the sensitivities a, is not required. Nevertheless, we
prefer derivative-based methods for their superior convergence
properties and the guarantees they provide [56].

Evaluating the objective J and its gradients rPJ at solution iter-
ates for P realized during iterative minimization evidently
requires computing the elastica solution and its sensitivities at
these loads. At a given solution guess P, Sec. 2 details the proce-
dure for computing a numerical approximation of hP satisfying
Eq. (5). We take up the task of computing the corresponding set
of sensitivities a next.

3.3 Load Sensitivity of Elastica Solutions. Differentiating
the force balance Eq. (3) for hP over the section ðsi; siþ1Þ with
respect to the load Pk, we get

B
@ h00P sð Þ
� �
@Pk

¼ @

@Pk

Xn

j¼iþ1

Pj Hj hP½ �sin hP sð Þ � V j hP½ �cos hP sð Þ
� � !

¼
Xn

j¼iþ1

djk Hj hP½ �sin hP sð Þ � V j hP½ �cos hP sð Þ
� �

þ
Xn

j¼iþ1

Pj Hj hP½ �cos hP sð Þ þ V j hP½ �sin hP sð Þ
� � @hP sð Þ

@Pk

þ
Xn

j¼iþ1

Pj
@Hj hP½ �
@Pk

sin hP sð Þ �
@V j hP½ �
@Pk

cos hP sð Þ
� �

(12)

where djk is the Kronecker delta symbol. To simplify Eq. (12), we
first use the fact that the derivatives of hP with respect to s and Pk

commute. Consequently, @ðh00PÞ=@Pk ¼ a00k . Next, the terms
@ðHj½hP�;Vj½hP�Þ=@Pk appearing in the last row of Eq. (12) have
the useful characterization

@ Hj hP½ �;V j hP½ �
� �

@Pk
¼ H0j hP; akð Þ;V0j hP; akð Þ
� �

(13)

Fig. 5 Demonstrating the capability of a manipulator designed with four vertical loads P124 to
approximate a series of different target deformations by optimizing the set of loads. The target
inclinations are indicated alongside each example.
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and represent the sensitivities of the inclination functionals.
Proceeding to simplify Eq. (12), we now have

Ba00k ¼
Xn

j¼iþ1

djkðHj½hP�sin hP � V j½hP�cos hPÞ

þ
Xn

j¼iþ1

PjðHj½hP�cos hP þ Vj½hP�sin hPÞak

þ
Xn

j¼iþ1

PjðH0jðhP; akÞsin hP � V0jðhP; akÞcos hPÞ (14)

over the interval ðsi; siþ1Þ and for each 0 � i < n. The boundary
conditions for ak follow from Eq. (4) as

akð0Þ ¼ a0kð‘Þ ¼ 0: (15)

A few remarks are in order at this point. First, since
ðHjðhP; akÞ;VjðhP; akÞ is linear in the second argument ak, we
note that Eq. (14) is a linear differential equation for ak. This is in
contrast to the nonlinear nature of Eq. (2) defining hP. Second, it
is apparent from Eq. (14) that the sensitivity of the elastica solu-
tion to the load Pk depends, in general, on the entire set of loads
ðP1;…;PnÞ, the set of direction cosines fðHj;V jÞgj, as well as on
the set of their derivatives fðH0j;V0jÞgj. This observation reveals
that a effectively quantifies the relationship between the load sen-
sitivity of a flexible manipulator and its design parameters.

We adopt a finite element method to approximate the sensitiv-
ities a as well. Here, we just provide the weak form Gk corre-
sponding to Eq. (14) that is required in a finite element
implementation to approximate the sensitivity component ak.
Choosing da to be an admissible variation of ak and by following
manipulations similar to those in Sec. 2, we get

Gkðak; daÞ¢
ð‘

s¼0

Ba0kda0 ds

þ
Xn�1

i¼0

Xn

j¼iþ1

djk

ðsiþ1

si

ðHj½hP�sin hP � V j½hP�cos hPÞda ds

þ
Xn�1

i¼0

Xn

j¼iþ1

ðsiþ1

si

PjðHj½hP�cos hP þ Vj½hP�sin hPÞak da ds

þ
Xn�1

i¼0

Xn

j¼iþ1

ðsiþ1

si

PjðH0jðhP; akÞsin hP � V0jðhP; akÞcos hPÞ da ds

Since Gk is linear in both its arguments, no additional linearization
procedures such as those required for G are necessary.

3.4 Numerical Experiments. We examine the performance
of the proposed load-optimization scheme with the help of numer-
ical experiments. In all the examples, we assume the elastica to be
of unit length (‘¼ 1) and set B¼ 1 (in appropriate units).

3.4.1 Controlling a Cantilever. In the first example shown in
Fig. 4, we consider an elastica that is subjected to a vertical end
load. We seek to approximate solutions of the form hd¼bs(s� 2)
for a range of values of the parameter b. These set of target solu-
tions and the corresponding set of elastica shapes for b ¼
0:2; 0:4;…; 1:4 are shown in solid lines in Figs. 4(b) and 4(c),
respectively. The solutions hP realized by the load optimization
scheme are indicated by circular markers in these figures. In each
case, we find that the realized solutions approximate the desired
ones reasonably well, and from Fig. 4(c), we find that the tip of

the elastica follows the target location accurately. The result in
Fig. 4(b) can also be interpreted from the perspective of approxi-
mating polynomials of the form bs(s� 2) by functions represented
using elliptic integrals, with the fitting parameter being the load
magnitude. It is evident from Fig. 4(c) why the approximation
deteriorates for larger values of b—as b grows, so does the end
rotation of the beam, and such shapes are simply not realizable
with our simplistic manipulator consisting of one vertical end
load.

For the case hd¼ s(s� 2), i.e., b¼ 1, Figs. 4(d) and 4(e) show
details of the iterations to convergence in the optimization
scheme. As indicated in Fig. 4(d), we start from the trivial initial
guess P¼ 0. At each iteration, the computed sensitivity automati-
cally guides the solution toward progressively smaller values of
the objective. The gradient of the objective realized at each itera-
tion is plotted in Fig. 4(e). At the eighth iteration, we find that
jdJ=dPj is smaller than the preset tolerance 10�10, indicating that
the Broyden–Fletcher–Goldfarb–Shanno algorithm has found a
stationary point of J at P � 2.947. In the process, the objective is
reduced from 0.267 to 1.466� 10�4.

3.4.2 A Four-Load Manipulator. Figure 5 shows a manipula-
tor designed with four equally spaced vertical loads used to
approximate six different target shapes. We find that the realized
solutions match the target deformations reasonably well in all
cases. Improving the approximations further requires changing the
design of the manipulator, i.e., the number, locations, and/or the
type of loadings. This example helps to highlight that having suffi-
ciently many loads is critical in realizing a rich workspace, i.e., a
diverse set of realizable deformations. Examples involving the
Heaviside function (H) also convey the importance of approximat-
ing target solutions rather than attempting to reproduce them. To
wit, these target deformations have sharp kinks and are therefore
not even admissible elastica solutions. Nevertheless, the optimiza-
tion scheme identifies loads that approximate these deformations
well. Finally, we note that while it is possible to identify optimal
loads using na€ıve sampling strategies in the case of one, or even
two loads, heuristic search schemes become prohibitively expen-
sive as the number of loads increases. This should be contrasted
with the optimization algorithm proposed here, which converges
within 10–15 iterations in most of our examples.

Fig. 6 Experimental setup for demonstrating shape control in
a manipulator actuated using a pair of tendons routed through
fixed posts. All coordinates mentioned in the figure are in mm.
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4 Tendon-Driven Manipulators

Tendon-driven elastic arms constitute an important class of
robotic manipulators. Besides their high degree of flexibility, their
adaptability across multiple length scales while relying essentially
on the same operating principle adds to their appeal. This is in
contrast to traditional manipulators composed of rigid links and
actuators, which become progressively more challenging to design
and expensive to fabricate at smaller length scales. This section is
aimed at demonstrating shape control for a simplistic class of
tendon-driven manipulators using the framework of load
optimization.

4.1 Specialization of the Forward Problem. We consider an
elastica loaded by n tendons attached at points fsign

i¼1 along its
length and assume that the tendons are routed through the fixed
points fðxi; yiÞgn

i¼1, see Figs. 1 and 6. The inclination functionals
for the jth load are given by

Hj h½ �;V j h½ �
� �

¼
xj � x sjð Þ; yj � y sjð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xj � x sjð Þð Þ2 þ yj � y sjð Þð Þ2
q (16)

which is simply the unit vector pointing from the attachment point
ðxðsjÞ; yðsjÞÞ to the routing point (xj, yj). The dependence of the
right hand side on h in Eq. (16) is implicit in the relationship
ðxðsjÞ; yðsjÞÞ¢

Ð sj

s¼0
ðcos hðsÞ;�sin hðsÞÞ ds. The directional deriva-

tives of these inclinations, required in the linearization of the
weak form and for computing the sensitivities, follow as:


H0jðh; DhÞ ¼ �ðDxðsjÞ � DhÞ ðyj � yðsjÞÞ2=r3=2

V0jðh; DhÞ ¼ �ðDyðsjÞ � DhÞ ðxj � xðsjÞÞ2=r3=2

where r ¼ ððxj � xðsjÞÞ2 þ ðyj � yðsjÞÞ2Þ1=2

and the directional derivatives of ðxðsjÞ; yðsjÞÞ are given by
DðxðsjÞ; yðsjÞÞ � Dh ¼

Ð sj

0
ð�sin hðsÞ; cos hðsÞÞDhðsÞ ds.

In contrast to the simple form of the inclinations in the cases of
loads acting at a constant angle to a datum or to the beam,
Eq. (16) reveals a nonlinear functional dependence between the
inclination of a tendon load and the elastica solution. In this sense,
Eq. (16) fully justifies the general framework introduced for the
forward problem in Sec. 2.

Figure 7(b) compares the Jacobi elliptic integral solution
derived in Refs. [48] and [49] for the case of a tendon load acting
at the end of an elastica with our finite element calculations.
Besides the specific form of the inclination functionals given by
Eq. (16), all other aspects of our solution algorithm are identical
to those used for the examples in Sec. 2. Figure 7(c) compares
predictions from our calculations and an experiment in which a

beam is loaded quasi-statically by a tendon attached to its end.
The tendon is loaded in 50 g increments and the deformed shapes
of the beam are measured using a laser scanner mounted on a port-
able coordinate measuring machine (Romer Absolute Arm). We
additionally include an envelope of computed solutions while
allowing for a 5% variation around the nominal applied load to
account for uncertainties in the experiment, including friction
between the tendon and its routing post. The comparisons reveal a
good match between the model and the experiments. Figure 7(c)
also helps to highlight the distinction between tendon loads and
follower loads. While Eq. (16) clearly reveals that tendon loads
are configuration-dependent, their inclination to the beam is not
assumed a priori, but is computed as part of the solution. This is
in contrast to follower loads which are (somehow) constrained to
remain at a fixed inclination to the deforming beam, see Ref. [54]
for a review of attempts to realize such loadings in practice.

4.2 Shape Control. Figure 6 shows a schematic consisting of
a flexible polycarbonate arm of length ‘¼ 700 mm actuated by a
pair of tendons attached at s1¼ 400 mm and s2¼ 700 mm. The ten-
dons are routed through fixed posts whose coordinates are men-
tioned in the figure. For each given target deformation, the
optimization algorithm computes the tensions in the two tendons
required to approximate the desired beam shape. Figure 8 shows
the optimal solutions computed to approximate target deformations
having inclination functions of the form hd ¼ g sðs2 þ b1sþ b0Þ
for different values of the parameter g. In these calculations, we
use the tensions computed for smaller values of g as the initial
guess for computing loads at larger g. Such an incremental optimi-
zation strategy is important in practice because the objective func-
tional may have multiple stationary points and/or there may be

Fig. 7 A comparison of the finite element approximation of an elastica loaded by a tendon shown in (a) with a
Jacobi-elliptic integral solution from the literature is shown in (b). The plot in (c) compares experimental meas-
urements of the deformation with numerical solutions while allowing for a 5% uncertainty in the load.

Fig. 8 Progressive approximation of a one-parameter set of
target deformations achieved using the load optimization
algorithm for the setup in Fig. 6. Experimental measurements
approximate the optimized solution well.
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multiple equilibrium solutions for the same set of tendon loads.
Figure 9 similarly demonstrates the manipulator approximating
various target deformations. Each specification for the target hd

defines a new objective functional J. Yet, nothing besides the ten-
sions in the tendons can be altered to approximate the desired
shape. Nevertheless, we find that the computed solutions approxi-
mate even exaggerated deformations of the arm quite well.

An important consideration with tendon manipulators is the
restriction that each tendon can only transmit tensile loads. In the
context of the setup in Fig. 6, this implies the constraints P1, P2 �
0 since negative loads causes slack in tendons. Such constraints
can be incorporated within the load optimization scheme as “trust
regions,” for instance. Despite these restrictions, the examples in
Figs. 8 and 9 clearly demonstrate that tendon manipulators can
help realize a rich workspace.

4.3 Experimental Realization. Toward validating our load
optimization approach for manipulating tendon-driven arms in a
controlled manner, we have designed a rudimentary setup based
on Fig. 6 and uses a pair of stepper motors to operate the tendon
spools. The arm is loaded by simply reeling in and reeling out the
tendons.

In principle, the tensions computed by the optimization algo-
rithm can be imposed through the motors by using a load cell for
each tendon. As a simpler alternative, we directly use the active
lengths of the tendons, which is the distance between the attach-
ment points on the deformed beam and the routing posts, to
deduce the number of rotations required for the spools attached to
the motors. In Fig. 6, these active lengths are indicated by ‘1 and
‘2. Hence the optimization algorithm presumes the actuation to be
tendon-load-controlled, while the actuation in the experiment is
tendon-length-controlled. In performing such a transformation of
variables (P1 7!‘1 and P2 7!‘2), we implicitly assume a locally
injective relationship between the active length of a tendon and
the tension it bears. This assumption, though valid in our experi-
ments, can be violated when there are snap-through instabilities
for instance. The idea of load-controlled computations followed
by length-controlled manipulation of tendon-arms makes the
manipulator inexpensive by avoiding the need for sensitive load
cells, and quite robust by not requiring careful quantification of
friction between tendons and their routing posts.

In summary, given a target deformation:

(i) we compute the necessary tensions P1, P2 using the load
optimization algorithm;

(ii) transform the tensions P1, P2 to the active lengths ‘1, ‘2

for the tendons;
(iii) deduce the number of turns of the spools required to

achieve the computed active lengths ‘1, ‘2;

(iv) and slowly (approximately quasi-statically) operate the
motors to reel in or reel out each tendon.

Observe that such a predictive framework is an open loop sys-
tem, i.e., there is no feedback from the arm to the loading
mechanism.

Figures 8 and 9 show the experimentally realized beam shapes
measured using a laser scanner. These measurements are expected
to lie close to the optimized solutions, which appears to be the
case in all the examples. Small deviations are certainly present
and we suspect that improving the accuracy of our motorized
length control mechanism, which is roughly 10 mm in the setup
used here, will help to reduce the mismatch. Comparing the exper-
imental measurements to the target solutions in the figures reflects
the effectiveness of the load optimization algorithm for realizing
controlled manipulation of the arm while operating within the
given design constraints.

5 Concluding Remarks

We have introduced a framework for realizing controlled
manipulation of flexible beams by optimizing the loads applied
and demonstrated its versatility with the help of varied experi-
ments. Generalizing the forward problem by considering inclina-
tions to be functionals of the solution, resolving the resulting
nonlinear differential equations with a finite element method, and
identifying optimal loads to approximate target deformations
using solution sensitivities to guide minimization procedures, are
all crucial aspects of our approach. The resulting mechanics-based
quantitative framework for realizing controlled manipulation,
albeit in the simple context of planar beams, should be contrasted
with the more ubiquitous statistical training methods that arguably
reduce the control problem to a data-fitting exercise.

We note a few observations on the performance of the load
optimization scheme based on our numerical experiments. With-
out exception, we find that requiring the target solution and the
admissible set of elastica solutions to satisfy identical boundary
conditions drastically reduces the approximation error. Our calcu-
lations show that the elastica solution is often less sensitive to
loads applied close to the clamped end when compared to loads
applied farther away. This is perhaps to be expected as well.
Nevertheless, this observation has important consequences. It sug-
gests that (optimized) loads applied close to the clamped end are
likely to have large magnitudes. As a remedy, the objective func-
tional can be modified to penalize large loads at the expense of
admitting an increase in the approximation error. A second conse-
quence of the contrast in load sensitivities is that the optimization
problem can become ill-conditioned and may therefore require
special numerical algorithms to ensure fast convergence. We also
find that including a (non-negative) weight factor in the definition

of the objective functional in Eq. (9), say as JðPÞ ¼
Ð ‘

s¼0
wðsÞ

ðhPðsÞ � hdðsÞÞ2 ds, can help in improving local approximations
of the target solution.

Preliminary results analyzing tendon-driven manipulators,
including the ones studied here, provide encouraging evidence of
the practical applicability of the load control scheme. We mention
that it is immediately possible to consider a wider variety of load-
ing scenarios, starting with the inclusion of moment loads in ten-
don manipulators where cables are attached away from the
centerline, as well as consider shape manipulation by controlling
electromagnetic interactions. The objective functional can also be
tailored, for instance, to realize a desired position for the tip of the
manipulator rather than attempting to match a target shape for the
beam. A mathematical analysis of the load optimization scheme,
aimed at analyzing the existence and (non)uniqueness of solu-
tions, inspecting the stability of computed solutions, and deriving
a priori estimates for the error between target and realizable
shapes, also warrants immediate attention. Such an analysis may
shed light on the relationship between the workspace of a

Fig. 9 More examples and experiments demonstrating shape
control for the manipulator in Fig. 6 to approximate varied tar-
get solutions
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manipulator and its design parameters, and in turn suggest
informed choices for objective functionals as well.

While our excursion here has been restricted to the case of pla-
nar manipulators, it is conceivable that the ideas introduced will
extend to realizing shape control in three-dimensional rods [22]. It
is of course necessary to identify rod models capable of accom-
modating large displacements and rotations [57]. In closing, we
mention that there are many aspects relevant to practical operation
of flexible manipulators that we have not paid heed to. This
includes accounting for contact interactions with an external envi-
ronment [58], compliance control relevant in medical device
applications where the external environment may be soft tissues
[59], or even vibration damping in the beam when imposing the
computed set of loads dynamically [60].
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