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a b s t r a c t 

Understanding the feature-rich buckling-dominated behavior of thin elastic ribbons is ripe 

with opportunities for fundamental studies exploring the nexus between geometry and 

mechanics, and for conceiving of engineering applications that exploit geometric nonlin- 

earity as a functioning principle. Predictive mechanical models play an instrumental role to 

this end. As a direct consequence of their physical appearance, ribbons are usually modeled 

either as one-dimensional rods having wide cross sections, or as narrow two-dimensional 

plates/shells. These models employ drastically different kinematic assumptions, which in 

turn play a decisive role in their predictive capabilities. Here, we critically examine three 

modeling approaches for elastic ribbons using detailed measurements of their complex 

three-dimensional deformations realized in quasistatic experiments with annulus-shaped 

ribbons. We find that simple and practically realizable ribbon deformations contradict as- 

sumptions underlying strain-displacement relationships in nonlinear rod and von Kármán 

plate models. These observations do not point at shortcomings of the theories themselves, 

but highlight fallacies in their application to modeling ribbon-like structures that are capa- 

ble of undergoing large displacements and rotations. We identify and validate, seemingly 

for the first time, the 1-director Cosserat plate theory as a model for elastic ribbons over 

a useful range of loading conditions. In the process, we demonstrate annular ribbons to 

be prototypical systems for studying the mechanics of elastic ribbons. Annular ribbons ex- 

hibit a tunable degree of geometric nonlinearity in response to simple displacement and 

rotation boundary conditions— a feature that we exploit here for highlighting the con- 

sequences of kinematic assumptions underlying different ribbon models. We additionally 

provide experimental evidence for the existence of multiple stable equilibria, bifurcation 

phenomena correlated with the number of zero crossings in the mean curvature, and lo- 

calization of energy, thus making annular ribbons interesting mechanical systems to study 

in their own right. 
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1. Introduction 

Ribbons are slender structures characterized by three disparate geometric dimensions— length � , width w and thick-

ness h , which are ordered such that � � w � h . The pair of aspect ratios � / w and w / h dictate their rich buckling-

dominated mechanical behavior. In many ways, a growing body of literature on the mechanics of ribbons is exemplary

of an evolving paradigm that considers buckling and related geometric nonlinearities as features to be exploited, rather

than as modes of failure ( Reis, 2015 ). Hence, ribbons are viewed as shape-programmable structures in flexible robotics

and energy harvesting applications ( Agostiniani et al., 2017; Armon et al., 2014; Shim et al., 2012 ). Manufacturing meth-

ods, functioning principles and assembly of miniaturized stretchable electronic devices require detailed understanding of 

the mechanics of ribbons adhered to elastic substrates ( Fan et al., 2018; Jiang et al., 2008; Luo et al., 2019; Sun et al.,

2006; Tarasovs and Andersons, 2008; Vella et al., 2009 ). Design and deployment of kirigami-inspired engineering struc-

tures depends on exploiting controlled post-buckling behavior of elastic ribbons ( Dias et al., 2017; Rafsanjani and Bertoldi,

2017 ). From sheet metal processing ( Fischer et al., 2003 ), to modeling DNA ( Moakher and Maddocks, 2005 ) and fabricat-

ing carbon nanotubes ( Kit et al., 2012 ), ribbon mechanics transcends not only length scales, but also traditional subject

classifications. 

We are concerned here with elastic ribbons having a planar unstressed configuration, that undergo large but reversible

displacements while incurring small strains. As their geometry suggests, such ribbons can be considered either as narrow

plates or as rods with highly anisotropic cross sections. This geometrical dichotomy is evident in mechanical models too.

The two most commonly used approaches for modeling ribbons are as one-dimensional Kirchhoff rods ( Goriely et al., 2001;

Mahadevan and Keller, 1993; Moore and Healey, 2019; Morigaki et al., 2016; Sano and Wada, 2019 ) and as two-dimensional

von Kármán plates ( Chopin et al., 2015; Green, 1936 ). A systematic way of deducing one dimensional models from plate

theories arises from the observation that ribbons remain nearly unstretched over a broad range of loading conditions. Ma-

terial inextensibility manifests as a pointwise kinematic constraint that deformed configurations remain isometric to the

unstressed state. In particular, inextensibility implies that the (mid)surface of a ribbon remains developable during defor-

mation. These ideas have been frequently invoked to construct mathematical descriptions of Möbius strips ( Starostin and

van der Heijden, 2007; 2015; Todres, 2015 ) and to compute deflections/stresses in plates and shells ( Harnach and Rothert,

1976; Mansfield, 1955 ). Integrating developability constraints within the framework of a classical Kirchhoff rod model yields

new nonlinear rod models ( Dias and Audoly, 2014; 2015 ) that elegantly unify ideas for describing surfaces in differential

geometry with structural mechanics theories. 

Our goal in this article is to critically examine modeling approaches for elastic ribbons. Specifically, we consider modeling

elastic ribbons as 2-director Cosserat rods, as von Kármán plates and as 1-director Cosserat plates. The two plate theories

represent weakly nonlinear and fully nonlinear two-dimensional models. In the context of the experiments considered here,

the 2-director Cosserat rod theory serves as a computationally convenient alternative to the Kirchhoff rod theory in which

inextensibility and unshearability constraints are imposed weakly. 

Fig. 1 succinctly summarizes the motivation for our investigation. The figure illustrates three simple virtual experiments

that involve rotating and translating clamped ends of semi-annular/annular ribbons. It shows predictions of the Cosserat

rod model alongside those of linear (Reissner-Mindlin), von Kármán and Cosserat plate theories. These simulations repre-

sent converged numerical solutions for the respective models. In each case, we find that a pair of models make drastically

different predictions for the deformed shape of a ribbon. The figure then evokes the obvious question— which prediction is

right? We resort to simple experimental realizations of such loading scenarios along with detailed measurements to settle

this conundrum. 

Evidently, the three models considered here are not representative of the spectrum of geometrical nonlinearity possible

in rod/plate theories that have been proposed in the literature. For instance, the well known nonlinear plate theories of

( Sanders, 1963; Koiter, 1966 ) are not investigated. Indeed, it is not our intention to exhaustively examine the applicability

of various rod/plate theories for modeling elastic ribbons. Yet, it is imperative to critically examine commonly used ones,

which is the rationale behind considering the von Kármán plate and 2-director Cosserat rod theories, with the latter serving

as a proxy for the Kirchhoff theory. The 1-director Cosserat plate theory represents a fully geometrically nonlinear model,

and its application to modeling elastic ribbons appears to be new. We also note that although some of the models examined

here can be generalized to account for finite strains, our aim is to examine the significance of geometric nonlinearity, i.e.,

of strain-displacement relationships underlying these models. Without exception therefore, we ensure that strains remain

small, and consequently, assume a linear relationship between conjugate stress-strain measures. 

We compute predictions of the aforementioned models using appropriate finite element methods. This is a challenging

endeavor in itself, cf. Moore and Healey (2019) ; Taylor et al. (2015) . Our emphasis, however, is not centered on intrica-

cies involved in the various approximation algorithms involved, see Appendix B . Instead, the novelty of our investigation

is the set of simple experiments designed to facilitate detailed comparisons between model predictions and experimental

measurements. We consider ribbon geometries and boundary conditions that elucidate varying degrees of geometric non-

linearity to help examine the appropriateness of strain-displacement relationships assumed in different ribbon models. We

adopt a non contact optical method for pointwise shape measurements in the experiments, which we directly compare with

predicted ribbon shapes. Noting that even small disparities in curvatures can manifest as large differences in overall shape,

we compare mean curvatures computed from measurements with model predictions. 
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Fig. 1. Virtual experiments using planar elastic ribbons (in gray) with a nonzero geodesic curvature expose unambiguous differences between the pre- 

dictions of four models for elastic ribbons (in color). Our goal in this article is to critically examine the accuracies of these predictions using detailed 

measurements from simple experiments realizing the loading scenarios depicted in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An important feature of our comparisons between experimental measurements and model predictions is that they do

not involve any fitting parameters. The ribbon specimens we use in the experiments are cut from flexible radiography films,

whose constitutive response we assume to be isotropic. Then, since all our experiments are displacement-controlled, model

predictions can be computed without knowledge of the elastic modulus. Furthermore, as reported in studies elsewhere

( Sano and Wada, 2019; Tarasovs and Andersons, 2008; Yu and Hanna, 2019 ), we find that the Poisson’s ratio (assumed to

be 0.4 in all our calculations) does not appreciably influence predictions of the models examined. In this sense, our findings

are independent of material composition, provided that the constitutive response is linear and isotropic. 

In the context of the existing literature on models for elastic ribbons, our findings concerning the von Kármán plate and

the Kirchhoff rod models are noteworthy. We show that predictions of the von Kármán model can be erroneous in loading

scenarios that appear to be far less severe than problems in which it is routinely applied, cf. Liang and Mahadevan (2009,

2011) . Similar observations have been demonstrated in studies on predicting instabilities in plates and ribbons ( Ben Amar

and Pomeau, 1997; Chopin et al., 2015 ). These findings echo Ciarlet’s opinion in Ciarlet (1997) that “... the validity of the

classical lower-dimensional equations, such as the two dimensional von Kármán equations for nonlinearly elastic plates... is no

longer left unquestioned.”

Contrary to plate models, where the width is treated as an independent coordinate, the classical Kirchhoff rod model for

ribbons treats the width simply as a parameter that modulates the bending and torsional stiffnesses. Despite glaring approx-

imations in the kinematics of cross sections, rod models have shown plenty of promise, especially for predicting instabilities

in ribbons ( Goriely et al., 2001; Morigaki et al., 2016; Sano and Wada, 2019; Yu and Hanna, 2019 ). Clear shortcomings have

been identified as well. For instance, Audoly and Seffen (2015) demonstrates a mode of instability in ribbons that is not

predicted by the Kirchhoff rod theory. 

Our findings related to the von Kármán plate and Kirchhoff rod models should not be misconstrued as identifying short-

comings of the models themselves. In fact, we identify kinematic assumptions in these models that are clearly violated

in the experiments, and are presumably responsible for their poor predictions. It is not our purpose here to question the

general validities of these models ( Ciarlet, 1980; Dill, 1992 ). Instead, our experiments are aimed at highlighting their appli-

cability to modeling elastic ribbons and our findings serve to caution against the application of these models for predicting

deformations of elastic ribbons without careful deliberation of the kinematics involved. 

Our study here comparing model predictions with experiments using annular ribbons serves multiple purposes. 

• Among the theories examined, we find that the 1-director Cosserat plate model best matches the experimental mea-

surements. Its application to ribbon mechanics appears to be new, and based on our experiments, very promising. In
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this sense, we identify a promising model for elastic ribbons over a practically useful range of deformations. A pre-

dictive model is an invaluable tool, both at small and large length scales where detailed observations or quantitative

measurements may be difficult. For ribbons to become an integral part of engineering applications that exploit flexibility

of slender structures, a virtual simulation framework is essential, and will augment an existing arsenal of scaling laws

( Witten, 2007 ). 

• Second, our study demonstrates that annular ribbons can serve as prototypical systems to highlight the consequences of

kinematic assumptions inherent in commonly used models for slender elastic structures. Linearizations and approxima-

tions in reduced order theories are well known, are routinely taught in courses on structural mechanics, and are being

rigorously justified using tools from asymptotic analysis ( Ciarlet, 1980; 1997; Fox et al., 1993; Steigmann, 2013 ) and �-

convergence ( Friesecke et al., 2006; Kirby and Fried, 2015 ). Yet, manifestations of these assumptions are rarely examined

in practice, much less in a unified manner using a simple experimental system. Here, we show that commonly used rod

and plate models differ quantitatively in their predictions for deformations of annular ribbons as a direct consequence

of the kinematic assumptions they invoke. In fact, Fig. 1 provides unambiguous evidence to this effect. 

• Third, our study establishes a clear way to test dedicated one-dimensional ribbon models that have been recently pro-

posed in the literature. Specifically, simulations using 1-director Cosserat plates can serve as benchmark solutions against

which to compare predictions of various ribbon models. It is possible that our findings concerning the Cosserat plate

model may inspire new reduced order models for ribbons. 

Organization: The remainder of the article is organized as follows. In Section 2 , we provide a brief overview of the ex-

periments with ribbons, the shape measurement technique used and the algorithms adopted for data analysis. In Section 3 ,

we briefly discuss the von Kármán theory as a weakly nonlinear plate model for elastic ribbons, and examine its accuracy

using the transversely displaced annulus and the pinched semi annulus experiments. We devote Section 4 to discussing the

applicability of the 2-director Cosserat rod model for ribbons. Therein, using the unfurled annular ribbon experiment, we

highlight qualitative and quantitative shortcomings in modeling ribbons as elastic rods. Next in Section 5 , we outline the

1-director Cosserat plate theory and demonstrate its promise for modeling complex three-dimensional ribbon deformations

realized in response to a practically useful range of boundary conditions. We highlight interesting features of the deforma-

tions observed in the pinched semi annulus and unfurled annulus experiments in Sections 6 and 7 , and conclude the article

in Section 8 with a set of remarks. 

2. Overview of ribbon experiments 

We briefly discuss the ribbon experiments used in subsequent sections to examine the accuracies of different ribbon

models, the technique used to measure (i.e., digitize) deformed ribbon shapes as dense point clouds, and the algorithms

used to compute curvatures and centerline shapes from the measured data. We begin with a description of the ribbon

samples used in the experiments. 

2.1. Ribbon samples 

Without exception, all our ribbon samples have a planar unstressed configuration and a rectangular cross section. We

denote the width of the cross section by w and the thickness by h . Ribbon samples are cut from flat exposed radiography

sheets having a thickness of h = 0 . 18 mm . Though not important for our purposes, we note that these films are composed

of a base layer of Polyethylene Terephthalate, which is coated on either side with thin emulsion layers. The base layer

has a nominal elastic modulus of 2.5 GPa, is flexible, and provides structural support. The emulsion layers mainly serve to

modulate imaging properties in radiological applications. We cut annular ribbon samples from flat sheets using a low power

laser. We presume that local changes in thickness and in material properties caused by heating in narrow regions along

ribbon edges cut by the laser are of negligible significance. 

2.2. Experiments 

Among the three experiments we consider, the suggestively named transversely displaced annular ribbon and the unfurled

annular ribbon experiments use annulus-shaped ribbons. For these, an annulus-shaped ribbon is slit along a radial line to

create a pair of mating edges. The edges are held in clamps which can be rotated and translated with respect to each other,

thereby creating a variety of loading conditions for the ribbon. In the transversely displaced annulus experiment, clamps

holding the ribbon edges are translated in the direction of the normal to the undeformed plane of the ribbon, see Fig. 3 a.

In the unfurled annulus experiment depicted in Fig. 9 a, ribbon edges are rotated by 180 ◦ about the normal to the plane

of the ribbon, and translated along a perpendicular diametrical axis. Ribbons respond to the imposed boundary conditions

by buckling into three-dimensional configurations due to compression along its free edges. In the pinched semi annulus

experiment, we cut an annular ribbon along a diametrical line and translate the resulting straight edges towards each other

along the direction of the cut, see Fig. 4 a. Evidently, the pinching action causes the ribbon to buckle out of plane. 

The widths of the annular and semi annular ribbons, measured as the difference between the outer and inner radii, range

from 20 mm to 35 mm. Hence, the aspect ratio w / h of the cross section generally exceeds 100. We choose the mean radius,
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Fig. 2. Illustration of the experimental procedure. The figure shows an annular ribbon cut from a radiography film being loaded using a pair of rotatable 

and translatable clamps. The shape of the deformed ribbon is measured as a dense point cloud using a laser line scanner and is used for comparisons with 

model predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

henceforth denoted by R, to be at least 4 or 5 times larger than the width, resulting in an aspect ratio �/w = π(R i + R o ) /w

in the range of 25 to 30. 

Ribbon deformations in all our experiments are fully reversible. Although displacements involved are large and compara-

ble to the dimensions of the ribbon, strains remain small and the material does not suffer any irreversible damage. In par-

ticular, ribbon shapes measured in the experiments do not show any noticeable differences after multiple loading/unloading

cycles. 

2.3. Shape measurements 

Owing to their small thickness, our ribbon samples have relatively small flexural rigidities. Hence, contact probes are not

well suited for recording their deformed shapes realized in the experiments. Instead, we exploit the fact that exposed ra-

diography films are sufficiently opaque to warrant resorting to optical measurement techniques. We use a laser line scanner

mounted on a coordinate measuring machine (Romer Absolute Arm 7320, Hexagon Metrology) to digitize deformed shapes

of ribbons, see Fig. 2 . A similar principle is used in Seereeram and Seffen (2014) to measure deformations of plates in bend-

ing. Scanning a ribbon yields a dense point cloud sampling its exposed surfaces. We generally ensure a density of at least

750 points per square inch in our measurements, and resort to higher resolutions in experiments that involve the formation

of localized features, cf. Fig. 26 . 

The coordinate system used during measurements is approximately aligned with that adopted for corresponding sim-

ulations. Noting that small errors in alignment can manifest as large deviations when comparing measured and pre-

dicted ribbon shapes, we refine the alignment further using a registration procedure. Specifically, we compute a rigid

body transformation, comprising of a rotation R and a translation t , that aligns the coordinate system of the CMM (co-

ordinate measuring machine) with that used in simulations using the iterative closest point (ICP) registration algorithm

( Besl and McKay, 1992 ). Denoting dense point cloud samplings of deformed ribbon surfaces from simulations and exper-

iments by { x i } n i =1 
and { y i } m 

i =1 
respectively, the registration algorithm computes R and t such that the misalignment er-

ror E(R , t ) = 

1 
2 

∑ m 

i =1 ‖ πx (Ry i + t ) − (Ry i + t ) ‖ 2 is minimized, where πx (y ) = arg min x j ‖ y − x j ‖ identifies the closest point

in { x i } n i =1 
for a given y . The resulting transformation { y i } m 

i =1 
�→ { Ry i + t } m 

i =1 
of the measured data does not introduce any dis-

tortion or permit any rescaling; it merely places the measured digital representation of the ribbon in a prescribed coordinate

system. 
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2.4. Mean curvatures from measured point clouds 

Recognizing their critical role in bending dominated deformations, we compute mean curvature distributions from mea-

sured point clouds for comparisons with model predictions. Besides facilitating an inspection of bending strains, we also

note that mean curvatures are invariant to rigid body transformations. For this reason, comparisons of mean curvatures are

unaffected by errors in alignment of coordinate systems used in simulations and experiments. 

Evidently, defining mean curvatures for a point cloud sampling requires surface fitting/approximation. To this end, we

adopt the algorithm of Cazals and Pouget (2005) and its implementation in the Computational Geometry and Algorithms

Library (CGAL) ( Alliez et al., 2019 ). Thus, at each point in the measured cloud, we compute a quadratic Monge patch de-

fined in a local frame in order to fit points in the immediate neighborhood in a least-squares sense. Then, curvatures

computed for such local surface patches define the curvatures at points in the measured data set. The number of neigh-

bors defining local patches is an important choice in these calculations— too small a number results in a noisy distribu-

tion, while fitting over a large neighborhood results in unintended smoothing. In our calculations, we use points belonging

to the first three rings in the immediate neighborhood. This procedure typically identifies about a dozen neighbors for

each patch. We have verified that small changes in the size of the neighborhood do not appreciably affect the curvatures

reported. 

2.5. Mappings to the reference configuration from point cloud measurements 

The three-dimensional nature of ribbon configurations observed in our experiments makes it challenging to analyze im-

portant features of the deformations. It is far more convenient, at least for the sake of visualization, to pull back fields of

interest (e.g., mean curvatures) to the planar reference configuration. Unfortunately, since our measurements do not involve

surface labeling or particle tracking, it is not possible to reconstruct the deformation mapping to help realize such a pull

back. Nevertheless, borrowing techniques from computational geometry and following the steps outlined in Appendix A , we

construct an injective correspondence between the reference and deformed configurations, while using only a point cloud

sampling of the deformed surface of the ribbon as input. The mapping constructed this way is not the deformation mapping,

but can be considered an approximation of it in the sense discussed in Appendix A . We use it extensively in our comparisons

between experiments and simulations for two purposes. First, it helps us visualize contours of mean curvature computed

using the measured point cloud over the reference configuration, see Figs. 8 , 25 , 26 . Second, it helps us identify deformed

centerlines of ribbons, which is not directly available from our point cloud measurements. Instead, we use the constructed

mapping to determine the deformed centerline as the image of the centerline in the reference configuration. This, in turn,

enables us to examine mean curvature distributions along centerlines determined from the experimental measurements, see

Figs. 3 d, 8,9 c, 10 b, 12 , 13 d and 14 b. 

2.6. Sources of error 

The experimental measurements reported in subsequent sections are representative samples from multiple repetitions. 

Their repeatability notwithstanding, we identify a few important sources of error. A key source of uncertainty is the extent

of the ribbon inserted into clamps in order to ensure a firm grip. We use clamps made of clear Acrylic (see Figs. 2 and 5 )

to help visually confirm that the length of the ribbon held within each clamp does not exceed 1–2 mm. A second source

of error stems from the unaccounted influence of gravity. This is an important concern in the pinched semi annulus and

unfurled annulus experiments because low flexural stiffnesses of ribbons make them susceptible to deformations induced

by self weight. For this reason, we specifically identify ribbon configurations in which gravity effects are verifiably small.

To this end, we compare a ribbon’s configuration with another in which the clamps holding the edges are rotated by 180 ◦.

This modification in boundary conditions effectively mimics inverting the orientation of the gravitational force acting on the

sample. Then, we deem gravity effects to be negligible if the measured shapes of the two configurations are (approximately)

mirror images of each other about the horizontal plane passing through the centers of rotation of the clamps. A brief dis-

cussion of this procedure for the unfurled annulus experiment is provided at the beginning of Section 7 . Finally, we note

that the laser scanner used for shape measurements has an accuracy of 80 μm. 

3. Ribbons as von Kármán plates 

The von Kármán plate theory serves as our exemplar of a weakly nonlinear plate model for ribbons. In the following,

we briefly recall the kinematics associated with the model and provide the energy functional extremized by equilibrium

solutions. We adopt a system of Cartesian coordinates for R 

3 , wherein the domain of the ribbon is given by the set �0 ×
(−h/ 2 , h/ 2) , with �0 ⊂ R 

2 denoting the mid surface lying in the plane spanned by the E 1 and E 2 axes. The E 3 axis coincides

with the direction of the ribbon’s thickness. We follow common conventions used for indicial notations, with all derivatives

and components of vectors/tensors referring to coordinates in the { E , E , E } basis. 
1 2 3 
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Fig. 3. Setup, measurements and model predictions for the transversely displaced annular ribbon experiment discussed in Section 3.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. The von Kármán plate model 

The ansatz for the displacement field in the model is given by 

U (x , x 3 ) = (u 1 (x ) − x 3 u 3 , 1 (x )) E 1 + (u 2 (x ) − x 3 u 3 , 2 (x )) E 2 + u 3 (x ) E 3 , (1)

where x = (x 1 , x 2 ) ∈ �0 , x 3 ∈ (−h/ 2 , h/ 2) , and u = (u 1 , u 2 , u 3 ) represents the displacement of the mid surface. Eq. (1) im-

plies that material fibers along the transverse direction remain straight and undistorted during deformation. The Kirchhoff

assumption, evident in 1 , dictates that transverse material fibers additionally remain normal to the mid surface (in a lin-

earized sense) during deformation. The assumption of small rotations of transverse fibers is made apparent by the terms

x 3 (u 3 , 1 E 1 + u 3 , 2 E 2 ) representing the in-plane projections of transverse displacements. 

The strain measure in the model is given by 

ε vk (x , x 3 ) = 

[ 

u 1 , 1 − x 3 u 3 , 11 (u 1 , 2 + u 2 , 1 ) / 2 − x 3 u 3 , 12 0 

sym . u 2 , 2 − x 3 u 3 , 22 0 

0 

] 

+ 

1 

2 

[ 

u 

2 
3 , 1 u 3 , 1 u 3 , 2 0 

sym . u 

2 
3 , 2 0 

0 

] 

� ε + 

∇ u 3 � ∇ u 3 

2 

, (2)

where the splitting of terms helps distinguish linear and nonlinear dependencies of the strain on displacement components.

The first term ε in Eq. (2) is the linearized strain measure from the classical Kirchhoff-Love plate theory. The second term

( ∇ u 3 �∇ u 3 )/2 contains quadratic contributions from derivatives of the transverse displacement, thus endowing the model

with geometric nonlinearity. While in-plane shear strains are permitted, transverse shear strains vanish as a consequence of

the Kirchhoff hypothesis. The vanishing strain component ( εvk ) 33 conveys inextensibility along the transverse direction. The

form of Eq. (2) is amenable to multiple interpretations concerning relative magnitudes of strain and rotation components

( Ciarlet, 1980 ). For instance, comparing Eq. (2) with the Green-Lagrange strain corresponding to the displacement field U in

Eq. (1) reveals that it is necessary to explicitly assume displacement derivatives to be small compared to unity, to drop terms

that depend on cubic and higher powers of the displacement, as well as to selectively retain quadratic terms depending on

the transverse displacement, see Section 5.1 . The justification for the latter approximation, as explained in Ciarlet (1980) ,

is based on examining the scalings of in-plane and transverse displacements with the plate thickness, which reveals that

derivatives of ( u 1 , u 2 ) decay faster with h compared to derivatives of u 3 . 

Assuming the material constitution to be homogeneous, linearly elastic and isotropic, and denoting the elastic modulus

by E and the Poisson ratio by ν , the strain energy in the model is given by Shames and Dym (1995 , Chapter 8) 
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�vK = �vK 
m 

+ �vK 
b , 

where �vK 
m 

= 

E h 

2(1 − ν2 ) 

∫ 
�0 

{ (
u 1 , 1 + u 

2 
3 , 1 / 2 

)2 + 

(
u 2 , 2 + u 

2 
3 , 2 / 2 

)2 

+ 2 ν
(
u 1 , 1 + u 

2 
3 , 1 / 2 

)(
u 2 , 2 + u 

2 
3 , 2 / 2 

)
+ 

1 − ν

2 

( u 1 , 2 + u 2 , 1 + u 3 , 1 u 3 , 2 ) 
2 
} 

dx 

and �vK 
b = 

1 

2 

E h 

3 

12(1 − ν2 ) 

∫ 
�0 

(
(u 3 , 11 + u 3 , 22 ) 

2 − 2(1 − ν)(u 3 , 11 u 3 , 22 − u 

2 
3 , 12 ) 

)
dx . (3) 

The splitting of integrals in Eq. (3) distinguishes contributions from stretching (�vK 
m 

) and bending deformations (�vK 
b 

) ,

and highlights their expected scalings with the thickness h of the ribbon. The Euler-Lagrange equations derivable from

Eq. (3) yield familiar statements of balances of resultant forces and moments, which are a set of nonlinear partial differential

equations (Shames and Dym, 1995, Chapter 8) . For the purpose of computing finite element approximations, Eq. (3) supple-

mented with appropriate boundary conditions along ∂�0 suffice. 

The contribution from bending in the von Kármán plate model is symbolically identical to that in the classical Kirchhoff-

Love model. The distinction between the two models in fact lies in the membrane contribution. While the membrane com-

ponent of the energy in the linear theory depends solely, and quadratically, on the in-plane displacement components u 1 
and u 2 , the energy �vK 

m 

depends on derivatives of the transverse displacement u 3 as well. As a consequence, membrane

force balance in the linear model is independent of u 3 , but is intimately and nonlinearly coupled to u 3 in the von Kármán

equations. 

The terms (u 3 , 11 + u 3 , 22 ) and (u 3 , 11 u 3 , 22 − u 2 
3 , 12 

) appearing in the bending energy functional can be interpreted to be

the mean and Gaussian curvatures of the mid surface, computed while invoking assumptions consistent with the strain-

displacement relationship in Eq. (2) . In this context, we highlight the close resemblance of �vK 
b 

to the Willmore functional

used for modeling biomembranes. We also note that in the limit of vanishing thickness, Eq. (3) yields a membrane model

that is useful in studying wrinkling phenomena by identifying regions subjected to compressive stresses. This limit, how-

ever, is not useful in our examples involving bending dominated deformations in which we anticipate membrane strains

and Gaussian curvatures to be small. Instead, we expect that extremizing Eq. (3) will identify deformations that are approx-

imately isometric to the undeformed state of the ribbon. 

3.2. Transversely displaced annular ribbon 

The first experiment we consider is a displacement-controlled variant of the “thin plate ring test” that is routinely used

for benchmarking finite element solutions of plate models ( Ba ̧s ar and Ding, 1992 ). As depicted in Fig. 3 a, the experiment

involves cutting an annular ribbon along a radial line and holding the edges created in translatable clamps. In the system

of coordinates indicated in the figure, the ribbon lies in the E 1 − E 2 plane, the slit is parallel to the E 1 axis, and the clamps

are translated along the E 3 direction. The ribbon has mean radius R = 90 mm and width w = 20 mm . The separation 
z 

between the ends is controlled by moving cylindrical posts holding the clamps using a lead screw mechanism (not shown

in the image). 

We increase the separation 
z in integer multiples of the width and measure shapes of the realized deformations. Fig. 3 b

shows the measured point clouds from the experiment in green, alongside predictions of the von Kármán plate model (in

magenta), which closely follow the experiment. For the case in which 
z equals the outer radius of the ribbon, Fig. 3 c

compares projections of the deformed centerline and Fig. 3 d the non dimensionalized mean curvature H = R × H along

the centerline. In many ways, the favorable comparisons of the von Kármán model with the experimental data seen in

Figs. 3 a–d justifies its widespread application and highlights the targeted nature of nonlinearity in the model. It is generally

well recognized that despite the explicit assumptions of small displacements and moderate rotations invoked in the strain-

displacement relationship in Eq. (2) , and the consequent lack of frame invariance, the model is applicable far from these

thresholds ( Audoly and Pomeau, 2010 , Chapter 7). We will see in Section 4 that a nonlinear rod model also predicts the de-

formations observed in this experiment quite well. Then, the consistency of the von Kármán plate theory with the Kirchhoff

rod model for narrow ribbons suggests that the results in Fig. 3 are not surprising ( Audoly and Pomeau, 2010 , Chapter 6.7). 

For the sake of completeness, Fig. 3 b–d also shows the predictions of a linear plate model (Reissner-Mindlin). Large

deviations evident in the plots are a consequence of the linearized strain-displacement relationship, rather than the specific

plate model adopted. In essence, the displacement field in the experiment does not simply scale linearly with 
z . This

result, however unremarkable, provides sufficient reason to disregard geometrically linear theories for modeling ribbons. It

also highlights the fact that nonlinear contributions of the transverse displacement to the in-plane strain components in the

von Kármán model conspire to identify a more physically realistic deformation. 

3.3. Pinched semi annular ribbon 

In the next experiment, we cut an annulus-shaped sample having mean radius R = 90 mm and width w = 20 mm along a

diametrical line to create a semi annular ribbon. Referring to the coordinate system indicated in Fig. 4 a, straight edges of the

ribbon created by the cut are parallel to the E axis, and are held in clamps oriented along the straight edges. The distance
2 
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Fig. 4. The pinched semi annular ribbon experiment shows a nonlinear dependence of the transverse displacement u 3 at the midpoint of the ribbon with 

the loading parameter 
y . 

Fig. 5. A comparison of experimental measurements and predictions of the von Kármán model for the pinched semi annulus experiment. Fig. (c) suggests 

that deviations from the assumptions in the model, which manifest even at small values of the imposed displacement 
y , are responsible for the poor 

predictions seen in (a) and (b). 
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between the centers of the clamps is denoted by 
y . When the ribbon is held in its undeformed state, the separation 
y 

equals the mean diameter 2R. The experiment consists in decreasing 
y by translating the posts holding the clamps, causing

the ribbon to spontaneously buckle out of the E 1 − E 2 plane. The experiment hence examines post buckling deformations of

the ribbon. 

Fig. 4 b plots the displacement at the midpoint along the centerline of the ribbon as 
y is decreased monotonically.

Owing to reflection symmetry about the E 1 − E 3 plane, we only examine displacement components along the E 1 and E 3 axes.

Data points from the experimental measurements (in green) show that the in-plane component u 1 varies approximately

linearly with 
y , while the transverse component u 3 varies nonlinearly. The latter observation implies that models capable

of predicting only linear relationships between u 3 and 
y are doomed to fail. This, of course, is in addition to the fact that

geometrically linear models are incapable of predicting the buckled branch of the solution. 

Fig. 5 a compares ribbon shapes measured in the experiments with shapes predicted by the von Kármán model. Both

Figs. 4 b and 5 a show that the model over predicts the transverse displacement, and that the deviation increases with pro-

gressive pinching. Furthermore, the relationship between 
y and u 3 appears to closely follow a cubic polynomial for the

experimental data, and a quadratic one for the von Kármán model. Fig. 5 b shows the loci of the tips of normals to de-

formed ribbon surfaces. By virtue of the Kirchhoff assumption, normals to the ribbon are material fibers (commonly termed

as directors). Hence, points close to the pole of the unit sphere in the images represent fibers that remain unrotated from

their initial orientation along E 3 — these fibers are located at the clamped ends of the ribbon. Reflection symmetry observed

in the deformations in Fig. 5 a are evident in the shapes of these loci as well. 

The main reason for poor predictions of the von Kármán model in this experiment is a lack of inner consistency. Figs. 5 b

and c show that directors undergo large rotations and that transverse displacement derivatives ( u 3,1 , u 3,2 ) have significant

magnitudes. At 
y = (10 / 9)R = 100 mm , for instance, when the clamps are displaced by a distance equal to the outer radius,

we find that director rotations approach 80 ◦ and that derivatives of u 3 approach magnitudes close to 1. These values clearly

contradict the strain-displacement relationship assumed in Eq. (2) . This experiment serves as a reminder that even seem-

ingly simple ribbon deformations can involve displacement magnitudes and director rotations that violate the kinematic

assumptions underlying the von Kármán model. 

4. Ribbons as nonlinear rods 

The physical appearance of narrow ribbons motivates considering reduced order one-dimensional models for describing

their mechanics. The early works of Sadowsky ( Hinz and Fried, 2015 ) and Wunderlich ( Todres, 2015 ), and the recent model

of Dias and Audoly (2015) represent efforts in this direction. In this section, using comparisons with experimental measure-

ments of ribbon deformations, we examine the merit of the well known and widely used approach of modeling ribbons as

nonlinear elastic rods ( Mahadevan and Keller, 1993; Morigaki et al., 2016; Sano and Wada, 2019; Yu and Hanna, 2019 ). 

4.1. 2-director Cosserat rods 

We adopt the special Cosserat theory of rods, described in Antman (1974) as a generalization of the Kirchhoff model. For

the sake of brevity, we mention just the essential elements of the theory in the context of modeling a rectangular ribbon

having a straight centerline in the unloaded state and assume a prismatic cross section. Detailed discussions of the theory,

as well its extension to pre-curved rods can be found in Antman (1995 , Chapter 8) and O’Reilly (2017 , Chapter 6). 

In the setting of the Cosserat theory, we consider a rectangular ribbon to be a directed curve whose configuration is

specified by the coordinates of its centerline and by pairs of orthonormal material lines, referred to as director fields, that

position its cross sectional planes. The undeformed state is specified parametrically as 

(S, ξ1 , ξ2 ) �→ ξ1 E 1 + ξ2 E 2 + S E 3 where (S, ξ1 , ξ2 ) ∈ [0 , � ] × [ −w/ 2 , w/ 2] × [ −h/ 2 , h/ 2] . (4) 

In Eq. (4) , we interpret S �→ S E 3 as denoting the straight centerline of the ribbon. The directors located at each S represent

material lines coinciding with the E 1 and E 2 axes, with the director E 1 oriented along the width and E 2 along the thickness

as depicted in Fig. 6 . An admissible deformation mapping for the ribbon has the form 

(S, ξ1 , ξ2 ) �→ ϕ 0 (S) + ξ1 t 1 (S) + ξ2 t 2 (S) , (5) 

where S �→ ϕ 0 (S) ∈ R 

3 parameterizes the centerline in the deformed configuration and S �→ ( t 1 ( S ), t 2 ( S )) are the convected

material directors. Each cross section is assumed to remain planar and undistorted, which is ensured in Eq. (5) by insisting

that t 1 and t 2 remain mutually perpendicular unit vectors. The triad { t 1 (S) , t 2 (S) , t 3 (S) = t 1 (S) × t 2 (S) } , commonly referred

to as the moving frame , defines an orthonormal basis for R 

3 at each S . The moving frame is more conveniently described

using a field of rotations S �→ 
( S ) which is such that t i (S) = 
(S) E i for i = 1 , 2 , 3 . Consequently, an admissible configuration

of the ribbon is fully determined by � = (ϕ 0 (S) , 
(S)) ∈ R 

3 × SO (3) . 

Orthonormality of the moving frame implies that we can find a skew-symmetric tensor field S �→ �( S ) such that d t i /d S =
�(S) t i (S) for i = 1 , 2 , 3 . The axial vector of �, denoted by ω, satisfies d t i (S) /d S = ω (s ) × t i (S) . Resolving ω in the moving

basis as 

ω (S) = κ1 (s ) t 1 (S) + κ2 (S) t 2 (S) + κ3 (S) t 3 (S) (6) 
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Fig. 6. The configuration of a rectangular ribbon modeled as a 2-director Cosserat rod is specified by the coordinates of its centerline ϕ0 and by a field of 

orthonormal director frames { t 1 , t 2 , t 3 }. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

identifies the flexural strains κ1 and κ2 about the principal axes of the cross section, and the torsional strain κ3 . The shear

and extensional strains, on the other hand, are given by the components of γ(S) = d ϕ 0 (S) /d S − t 3 (S) . The material versions

of the strains γ and ω follow as 

� = 
T γ = 
T dϕ 0 

dS 
− E 3 and K = 
T ω = κi E i , (7)

respectively. Presuming a linear relationship between the strain measures in Eq. (7) and the conjugate resultants, the strain

energy functional in the model is given by 

�CR [�] � �CR 
e + �CR 

s + �CR 
b (8)

where �CR 
e = 

E A 

2 

∫ � 

S=0 

(

T dϕ 0 

dS 
· E 3 − 1 

)2 

dS, 

�CR 
s = 

G A 

2 

∫ � 

S=0 

( (

T dϕ 0 

dS 
· E 1 

)2 

+ 

(

T dϕ 0 

dS 
· E 2 

)2 
) 

dS, 

and �CR 
b = 

1 

2 

∫ � 

S=0 

( EI 1 κ
2 
1 + EI 2 κ

2 
2 + GJ κ2 

3 ) dS, 

where �CR 
e and �CR 

s represent energetic contributions from extension of the centerline and transverse shearing, while �CR
b 

represents contributions from bending and twist. The extension and transverse shear stiffnesses scale with the area A = wh

of the cross section. Since h � w , the area moments of inertia about the principal axes, namely, I 1 = wh 3 / 12 and I 2 =
hw 

3 / 12 , yield drastically different bending modulii EI 1 � EI 2 . In particular, it is far easier to bend about the t 1 axis than

about t 2 . The torsional stiffness GJ about t 3 is computed using the polar moment of inertia J, which for the rectangular cross

section is given by the approximate expression J ≈ 32 wh 3 (16 / 3 − 3 . 361 h/w ) . 

Evidently, the main distinctions between Eq. (7) and the Kirchhoff rod model are the extensibility of the centerline and

the possibility of transverse shear. In Kirchhoff rods, the normal t 3 ( S ) to the cross section at ϕ0 ( S ) coincides with the tangent

d ϕ0 ( S )/ dS to the centerline. The moving frame therefore equals the convected frame { t 1 , t 2 , d ϕ0 / dS }. Consequently, the strain

measure � vanishes, and �CR 
e = 0 and �CR 

s = 0 . The configuration of a Kirchhoff rod is therefore fully determined by the

rotation S �→ 
( S ) of the director frame, with the position of the centerline computed as ϕ 0 (S) = 

∫ S 
s =0 
(s ) E 3 ds . The linear

constitutive relationship between curvatures/twist and conjugate stress couples in Eq. (8) is identical to that invoked for a

Kirchhoff rod. However, section contact forces in the 2-director Cosserat model are determined constitutively, rather than as

Lagrange multipliers imposing inextensibility and unshearability constraints in a Kirchhoff rod. 

We do not expect extensional and transverse shear strains to be significant in bending-dominated experiments. We have

verified this to be the case in simulations as well. In the context of our experiments therefore, the Cosserat rod theory effec-

tively reduces to a Kirchhoff rod model in which inextensibility and unshearability are imposed weakly, with the extensional

and shear stiffnesses serving as penalty parameters. In fact, changing these stiffnesses by an order of magnitude does not

appreciably affect the numerical predictions. Hence, the conclusions we infer for the Cosserat rod model largely extend to

the Kirchhoff rod model as well. In fact, the main reason behind adopting the Cosserat theory over the Kirchhoff rod model

is the ease of implementation of the former, see Appendix B.2 . While rotations in the Kirchhoff model can be computed

using a variant of the algorithm discussed in Appendix B.2 , the main difficulty stems from imposing displacement boundary

conditions. Specifically, since S �→ 
( S ) defines the configuration of the ribbon in the Kirchhoff model, imposing displacement

boundary conditions manifests as a nonlinear integral constraint of the form 

∫ � 
s =0 
(s ) E 3 ds = ϕ 0 (� ) . By explicitly introducing

the centerline coordinates as an independent unknown, the Cosserat model helps avoid such constraints. 
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Fig. 7. When one end of a rectangular ribbon is clamped and the other end is rotated about the E 1 axis parallel to the width, the centerline of the ribbon 

bends into an arc of a circle. Rotating the section S = � by the angle 2 π causes the ribbon to roll up into a cylinder. Both Kirchhoff and Cosserat rod models 

reproduce this solution exactly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Rolled up rectangular ribbon 

Perhaps the most well known solution of a rectangular ribbon undergoing large displacements and rotations is that in

which one edge of the ribbon is clamped while the other end is subjected to a rotation/moment, causing the centerline

of the ribbon to roll up into an arc of a circle. When the end moment (or rotation angle) is sufficiently large, the ribbon

assumes the shape of a cylinder. We recall this example because it helps to highlight the geometric exactness of the Cosserat

rod theory, besides providing a simple context in which to examine the strain measures in the model. We note that the von

Kármán theory cannot describe this solution unless the imposed moment/rotation is assumed to be sufficiently small. 

In the following, we demonstrate that the deformation 

ϕ 0 (S) = r sin (αS/� ) E 2 + r(1 − cos (αS/� )) E 3 and 
(S) = 

[ 

1 0 0 

0 sin (αS/� ) cos (αS) 
0 − cos (αS/� ) sin (αS/� ) 

] 

, (9) 

illustrated in Fig. 7 representing the centerline deformed into an arc of a circle of radius r = �/α when the end S = � is

rotated by a prescribed angle α > 0, is a solution of the Cosserat rod model. The deformed mid surface of the ribbon,

parameterized as (S, ξ1 ) �→ ϕ 0 (S) + ξ1 
(S) E 1 , represents the section of a cylindrical surface of radius r with axis parallel to

E 1 . The cylindrical mid surface is bounded between tangent planes normal to E 2 at S = 0 and to cos α E 2 − sin αE 3 at S = � .

When α = 2 π, Eq. (9) represents the ribbon rolled up into a cylinder of radius � /2 π . 

First, we note that Eq. (9) does not involve any extension or transverse shear: 

dϕ 0 

dS 
= cos (αS/� ) E 2 + sin (αS/� ) E 3 ⇒ � = 
T dϕ 0 

dS 
− E 3 = 0 ⇒ N = 0 . (10) 

Computing the curvature strains, we have 

� = 

d


dS 

T = 

α

� 

[ 

0 0 0 

0 0 −1 

0 1 0 

] 

⇒ ω = (α/� ) E 1 ⇒ K = 
T ω = (α/� ) E 1 ⇒ M = (α/� ) EI 1 E 1 . (11) 

Then, evaluating the statement of virtual work in for an arbitrary variation ( η0 , ϑ), we get (see Eq. (38a) in Appendix B.2 ) 

G (�, ( η0 , ϑ )) = EI 1 

(
α

� 

)∫ � 

S=0 

E 1 · 
T d ϑ 

dS 
dS = EI 1 

(
α

� 

)∫ � 

S=0 

d( ϑ · E 1 ) 

dS 
dS = ( ϑ (� ) − ϑ (0)) · E 1 = 0 , (12) 

where we have used the fact that ϑ (0) = ϑ (� ) = 0 owing to the prescribed rotations at the ends. Eq. (12) verifies that the

deformation in Eq. (9) is a stationary point of �CR . Eq. (10) shows that Eq. (9) is in fact a solution of the Kirchhoff rod

model as well. Thanks to the cylindrical symmetry of the solution, Eq. (9) can also be derived using the planar Elastica

model ( Frisch-Fay, 1962 ). This simple example highlights the potency of modeling ribbons undergoing large displacements

and rotations as nonlinear rods. 

4.3. Transversely displaced annular ribbon and pinched semi-annular ribbon experiments 

Next, we revisit the experiments discussed in Sections 3.2 and 3.3 to compare predictions of the Cosserat rod model

with measurements. Fig. 8 a shows the annular ribbon from the experiment described in Section 3.2 , when the transverse

displacement 
z equals the outer radius R 0 = 100 mm . The model prediction is shown in blue and the computed centerline

is highlighted using circular markers. Examining the mean curvature distribution helps us inspect additional details. 
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Fig. 8. Comparisons of measured and Cosserat rod model predictions for the (a) transversely displaced annulus and the (b) pinched semi annulus experi- 

ments. 

 

 

 

 

 

 

 

Mean curvature from a Cosserat rod solution. Setting ξ2 = 0 in Eq. (5) shows that the mid surface of a deformed ribbon

modeled as a Cosserat rod is the ruled surface 

(S, ξ1 ) �→ φ(S, ξ1 ) = ϕ 0 (S) + ξ1 t 1 (S) , (13)

whose mean curvature is given by do Carmo (2016) : 

H(S, ξ1 ) = 

1 

2 

eG + gE − 2 f F 

EG − F 2 
, (14)

where the components of the first and second fundamental forms are 

I = 

[
E F 
F G 

]
= 

[
φ,S · φ,S φ,S · φ,ξ1 

· φ,ξ1 
· φ,ξ1 

]
and II = 

[
e f 
f g 

]
= 

[
φ,SS · n φ,Sξ1 

· n 

· φ,ξ1 ξ1 
· n , 

]
(15)

and n is the unit normal to the mid surface. A few observations help simplify Eq. (14) . Assuming extensional and transverse

shear strains to be sufficiently small, we set t 3 = ϕ 

′ 
0 . Then, 

F = φ,S · φ,ξ1 
= (t 3 + ξ1 t 

′ 
1 ) · t 1 = 0 , G = φ,ξ1 

· φ,ξ1 
= t 1 · t 1 = 1 and g = φ,ξ1 ξ1 

· n = 0 , 

which reduces the mean curvature to H = e/ (2 E) . It therefore suffices to compute e and E from the numerical solution. We

have 

E = (t 3 + ξ1 t 
′ 
1 ) · (t 3 + ξ1 t 

′ 
1 ) = 1 + 2 ξ1 t 

′ 
1 · t 3 ︸ ︷︷ ︸ 
−κ2 

+ ξ 2 
1 t 

′ 
1 · t ′ 1 ︸ ︷︷ ︸ 
κ2 

2 
+ κ2 

3 

= (1 − ξ1 κ2 ) 
2 + ξ 2 

1 κ
2 
3 , 

which, notably, is strictly non-negative. With 

φ,S × φ,ξ1 
= (t 3 + ξ1 t 

′ 
1 ) × t 1 = (1 − ξ1 κ2 ) t 2 − ξ1 κ3 t 3 ⇒ n = 

(1 − ξ1 κ2 ) t 2 − ξ1 κ3 t 3 √ 

E 
, (16)

we compute e = φ,SS · n as 

e = 

(
(t ′ 3 + ξ1 t 

′′ 
1 ) · ((1 − ξ1 κ2 ) t 2 − ξ1 κ3 t 3 ) 

)
√ 

E 
= 

(
(1 − ξ1 κ2 )(t 2 · t ′ 3 ) + ξ1 (1 − ξ1 κ2 )(t ′′ 1 · t 2 ) − ξ 2 

1 κ3 (t ′′ 1 · t 3 ) 
)

√ 

E 
. 

Now, t 2 · t ′ 
3 

= −κ1 and by the chain rule, t ′′ 
1 

· t 2 = (t ′ 
1 

· t 2 ) 
′ − t ′ 

1 
· t ′ 

2 
= κ ′ 

3 
− κ1 κ2 . Similarly, t ′′ 

1 
· t 3 = −κ ′ 

2 
+ κ1 κ3 . Hence, we get 

e = 

1 √ 

E 

(
−(1 − ξ1 κ2 ) κ1 + ξ1 (1 − ξ1 κ2 )(κ

′ 
3 − κ1 κ2 ) + ξ 2 

1 κ3 (κ
′ 
2 − κ1 κ3 ) 

)
. 

In particular, along the centerline ξ = 0 , the mean curvature simplifies to H(S, 0) = −κ . 
1 1 
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Fig. 8 a shows contours of the mean curvature on the deformed surface and plots of its profile along the centerline

of the ribbon computed from model predictions using the expressions derived above. Contours of H computed from the

experimental measurement shows that the mean curvature is a weak function of the coordinate ξ 1 , suggesting that the

ribbon deformation is effectively rod-like. Inspecting the profiles of H along the centerline, we find that the values computed

from model predictions and from experimental measurements agree well. We find small differences in magnitudes, but the

locations of extrema and zero crossings in the two profiles are quite close. 

Fig. 8 b compares analogous data for the pinched semi annulus experiment, when the separation 
y between the ends

equals the inner radius R i = 80 mm . The predictions for ribbon shape and the mean curvature closely follow the experimen-

tal measurements, unlike in the case of the von Kármán theory ( Fig. 4 b). The rod model imposes severe restrictions on the

kinematics of the ribbon along the narrow width, but retains accurate geometric descriptions of displacements and rotations

along the centerline of the ribbon. 

4.4. Unfurled annular ribbon 

The discussions in Sections 4.2 and 4.3 provide reassuring evidence of the merit behind modeling slender ribbons as

nonlinear rods. The next experiment provides evidence to the contrary. Fig. 9 a depicts the setup used in the unfurled annu-

lus experiment. Therein, an annular ribbon having a mean radius of 90 mm and a width of 20 mm is slit along a radial line.

The straight edges of the ribbon are held in clamps that are initially oriented along the E 1 axis. The clamps are rotatable

about the E 3 axis normal to the undeformed plane of the ribbon, and translatable along a lead screw running parallel to the

E 2 direction. The experiment consists in rotating the ribbon’s edges by 180 ◦ and examining its deformation as the clamps

are translated. We mention a few preliminary remarks concerning the resulting deformation of the ribbon. 

• Rotating or translating the clamps necessarily induces compression along the outer periphery of the ribbon. For this

reason, we expect planar solutions to be unstable. This manifests in the experiments as well— the ribbon buckles out of

its initial plane even for small displacements and/or rotations of its ends. By virtue of the boundary conditions imposed,

the clamped edges remain in the initial plane of the ribbon throughout the deformation. Yet, the ribbon deforms into

complex three dimensional shapes. The experiment therefore helps examine deformations far into the post buckling

regime. 

• The deformations in Fig. 9 a and b bear superficial resemblances to shapes of Godet surfaces introduced in Nechaev and

Voituriez (2001) to model surface deformations induced by a prescribed metric. Note that the undulations observed

here are caused by the difference between the inner and outer circumferences of the ribbon, not by a metric-altering

mechanism such as growth, diffusion damage or residual stresses ( Marder et al., 2003; Sharon and Efrati, 2010; Sharon

et al., 2002 ). 

• Owing to the nature of the boundary conditions imposed, we expect the deformation to be symmetric about the E 1 − E 3 

plane. This is observed in our experiments as well, although it is possible to break symmetry by perturbing the ribbon

to alternate equilibrium states. We discuss the possibility of multiple solutions and provide examples of deformations

lacking reflection symmetry in Section 7 . 

• This experiment complements the example of a rectangular ribbon rolled up into a cylinder discussed in Section 4.2 in

the sense that it effectively attempts to straighten out the ribbon’s circular centerline. The clamped edges, however, are

parallel to the axis of rotation in the example in Section 4.2 , but orthogonal to the rotation axis in Fig. 9 a. 

Fig. 9 b compares ribbon shapes predicted by the Cosserat rod model with experimental measurements as the separation


y between the ribbon edges is progressively increased. For ease of visualization, the figure shows projections of these

shapes on the E 1 − E 2 and E 2 − E 3 planes. At first glance, the predictions appear to be reasonably good, although deviations

comparable to the width of the ribbon are evident. Since the ribbon straightens out progressively with increasing distance


y , it is imprudent to rely only on shape comparisons to evaluate the accuracy of the rod model. Examining profiles of the

mean curvature along the centerline of the ribbon in Fig. 9 c reveals startling qualitative differences. The profile predicted by

the rod model (equal to −κ1 ) shows localization at the clamped ends and at the center, and a nearly vanishing curvature

elsewhere. Curvatures computed from experimental measurements indicate otherwise. At 
y = 250 mm , the measured data

suggests that it is energetically preferable for the ribbon to adopt a configuration in which the mean curvature is piecewise

constant along the centerline. At larger separations of 300 mm and 470 mm, the ribbon switches more frequently between

positive and negative mean curvatures of approximately equal magnitudes. 

The comparisons in Fig. 9 suggests that the set of admissible ribbon configurations in the rod model is not sufficiently

“rich” to accommodate the state of combined bending and twist that the ribbon exhibits in this experiment. Fig. 10 shows

that increasing the width of the ribbon from 20 mm to 35 mm, while retaining the mean radius of 90 mm, exacerbates the

shortcomings of the kinematic assumptions. Comparing the mean curvature profiles at the separation 
y = 250 mm shows

that the ribbon retains a roughly piecewise constant mean curvature, just as was the case in Fig. 9 c with the narrower

ribbon. Not only does the rod model predict sharp localization at the ends and at the center, it also predicts six zero

crossings in the profile. The experiment reveals just two. 

It can be argued that the discrepancies observed in Figs. 9 and 10 stems from the width of the ribbon being relatively

large. Setting the length scale � to be the circumference π(R i + R 0 ) of the centerline, the aspect ratios w / � are approximately

0.035 and 0.062 for widths w = 20 mm and w = 35 mm , respectively. These values are comparable to the ratio of 1 / 20 = 0 . 05
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Fig. 9. The unfurled annular ribbon experiment highlights a scenario in which the kinematic assumptions underlying the Cosserat rod model render it 

incapable of describing 3D shapes that an annular ribbon can assume. 

 

 

 

 

 

 

 

that is commonly cited in the context of beam theories. In this sense, the aspect ratios used in the experiment are within

bounds of engineering applications in which ribbon-like structures are likely to be of interest. Rather, the main shortcoming

of the rod model stems from lumping details of the highly anisotropic cross section into stiffness parameters. Fig. 15 b shown

later suggests that the ansatz for cross section kinematics in the Cosserat rod theory results in significant errors in the strain

energy when describing general deformations of ribbon-like structures. 

5. Ribbons as Cosserat plates 

With compelling evidence from Section 3 on the need for accurate descriptions of large displacements and rotations, and

from Section 4 on the perils of imposing severe kinematic restrictions along the width, we consider modeling ribbons as

1-director Cosserat plates next. In the following, we discuss the main elements of theory in the context of homogeneous



16 A. Kumar, P. Handral and C.S.D. Bhandari et al. / Journal of the Mechanics and Physics of Solids 143 (2020) 104070 

Fig. 10. Unfurling a wide ribbon amplifies the shortcomings of the rod model in predicting ribbon deformations. Both the displacement and mean curvature 

predictions show large deviations from the experimental data. In (b), notice that the rod model predicts six zero crossings in the mean curvature along the 

centerline, while the experiment reveals only two. 

Fig. 11. Modeling a ribbon as a 1-director Cosserat plate. An admissible configuration � is specified by the coordinates ϕ of the mid surface and a field of 

inextensible material directors t . 

 

 

 

 

 

 

 

 

 

 

 

 

 

plates having a uniform thickness. Without loss of generality, we assume a Cartesian system of coordinates since this is

most convenient for numerical implementation. We refer to Antman (1995) for detailed discussions of the theory, its gen-

eralization to extensible directors, and for its derivation in general curvilinear coordinate systems starting from the three

dimensional problem of nonlinear elasticity with assumed kinematics. 

5.1. 1-director Cosserat plates 

The reference configuration of a ribbon modeled as a 1-director Cosserat plate is specified as 

(x 1 , x 2 , x 3 ) �→ x 1 E 1 + x 2 E 2 + x 3 E 3 , where (x 1 , x 2 ) ∈ �0 , −h/ 2 ≤ x 3 ≤ h/ 2 . (17) 

As depicted in Fig. 11 , the set �0 ⊂ R 

2 is the mid surface lying in the plane spanned by the E 1 − E 2 axes. At each point on

the mid surface, the ribbon is endowed with a material director that is oriented along E 3 , coinciding with the direction of

the ribbon’s thickness. An admissible deformation mapping has the form 

(x 1 , x 2 , x 3 ) �→ ϕ(x 1 , x 2 ) + x 3 t (x 1 , x 2 ) , (18) 

in which (x 1 , x 2 ) �→ ϕ(x 1 , x 2 ) ∈ R 

3 and (x 1 , x 2 ) �→ t (x 1 , x 2 ) ∈ R 

3 describe respectively, the mid surface of the ribbon and its

director field in the deformed configuration. While Eq. (18) already stipulates that directors remain straight during deforma-

tion, we will additionally insist that they remain inextensible as well by assuming that t · t = 1 . Consequently, an admissible

configuration of the ribbon is specified by � = (ϕ, t ) ∈ R 

3 × S 2 , where S 2 is the unit sphere in R 

3 . By not requiring directors

to remain normal to the mid surface during deformation, we permit the possibility of transverse shear. This aspect of the

general theory is insignificant in our experiments involving thin ribbons, and is retained mainly for the simplifications it

affords when computing finite element approximations. 

Examining the statement of virtual power with kinematics given by Eq. (18) helps identify the membrane, shear and

bending strain measures and their conjugate stress/couple resultants in the model. To this end, it is convenient to denote
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the tangents to the mid surface ϕ ,1 and ϕ ,2 by g 1 and g 2 , respectively, which, along with g 3 = t , defines a moving basis. We

denote the corresponding dual basis by { g 1 , g 2 , g 3 }. Following ( Simo and Fox, 1989 , Sections 4, 5), strain measures are given

by 

ε = 

1 

2 

(ϕ ,i · ϕ , j − δi j ) g 

i 
� g 

j , γ = (ϕ ,i · t ) g 

i and κ = (ϕ ,i · t , j ) g 

i 
� g 

j , i, j = 1 , 2 , (19)

with corresponding effective stress resultants denoted by n = n i j g i � g j , q = q i g i and m = m 

i j g i � g j , respectively. The mem-

brane strain ε measures the deviation of the surface metric, given by its first fundamental form with components g i j =
ϕ ,i · ϕ , j , from the identity metric corresponding to Eq. (17) in the undeformed state. Since we expect the director field t to

coincide with the unit normal n = (g 1 × g 2 ) / ‖ g 1 × g 2 ‖ for thin ribbons, we expect transverse shear strains γi = ϕ i · t ≈ ϕ i · n

to be vanishingly small. Then, neglecting transverse shear, we have ϕ , i · t , j ≈ ϕ , i · n , j so that the bending strain κ coincides

with the second fundamental form of the mid surface. 

We assume a constitutive relationship between the conjugate stress resultants and strain measures of the form 

J n 

i j = 

E h 

1 − ν2 
H 

i jkL ε kL , J q i = G hδi j γ j and J m 

i j = 

E h 

3 

12(1 − ν2 ) 
H 

i jkL κkL , 

where H 

i jkL = νδi j δkL + 

(1 − ν) 

2 

(δik δ jL + δiL δ jk ) , i, j = 1 , 2 , (20)

and J = ‖ g 1 × g 2 ‖ is the Jacobian of the mid surface deformation �0 �→ � = ϕ(�0 ) . Since we are concerned with ribbons

having a flat reference configuration, strain measures in Eq. (19) are stated assuming that the reference and unstressed con-

figurations coincide and invoking the trivial parameterization in Eq. (17) for �0 . Similarly, the constitutive relationship stated

in Eq. (20) assumes a system of Cartesian coordinates over the reference configuration. Generalizations of Eqs. (19) and

(20) to accommodate curvilinear/parameterized unstressed configurations are well known, and can be found in Simo and

Fox (1989) for instance. 

As expected, the membrane and shear modulii in Eq. (20) scale as h , while the bending modulii scale as h 3 . Equilibrium

configurations of the ribbon are extremizers of the energy functional expressed as a sum of membrane, transverse shear

and bending contributions: 

�CS = �CS 
m 

+ �CS 
s + �CS 

b 

where �CS 
m 

= 

1 

2 

∫ 
�

n 

i j ε i j d � = 

E h 

2(1 − ν2 ) 

∫ 
�0 

(
ν Tr [ ε ] 2 + (1 − ν) ε : ε 

)
d �0 , 

�CS 
s = 

1 

2 

∫ 
�

q i γi d � = 

E h 

4(1 + ν) 

∫ 
�0 

( γ · γ ) d �0 , 

�CS 
b = 

1 

2 

∫ 
�

m 

i j κi j d � = 

E h 

3 

24(1 − ν2 ) 

∫ 
�0 

(
ν Tr [ κ] 2 + (1 − ν) κ : κ

)
d �0 . (21)

Relation to 2-director Cosserat rods. It is instructive to compare Eq. (18) with the kinematic assumptions invoked in the

Cosserat rod model in Eq. (5) . For simplicity, let us assume the case of a rectangular ribbon, so that �0 = [0 , � ] × [ −w/ 2 , w/ 2]

in which the centerline coincides with the E 1 axis and the direction of the width with E 2 . Identifying the coordinates S, ξ 1

and ξ 2 in Eq. (5) with x 1 , x 2 and x 3 respectively in Eq. (18) , we recover the kinematics of the 2-director Cosserat rod by

setting ϕ(x 1 , x 2 ) = ϕ 0 (x 1 ) + x 2 t 1 (x 1 ) . In this sense, the 2-director Cosserat rod model is a special case of the 1-director

Cosserat plate with restricted kinematics along the width. We refer to Rubin (2013) for a unified description of Cosserat rod

and plate models. 

As a specific example of this relationship between the two models, we revisit the problem of the rolled up rectangular

ribbon discussed in Section 4.2 . Assuming the centerline to be oriented along E 1 , the width along E 2 and the thickness along

E 3 , the deformation mapping for the mid surface in Eq. (9) is recast as 

ϕ(x 1 , x 2 ) = r sin (αx 1 /� ) E 1 + x 2 E 2 + r (1 − cos (αx 1 /� )) E 3 . (22)

Similarly, identifying the director field t 2 ( S ) with t in Eq. (18) , we get 

t (x 1 , x 2 ) = − sin (αx 1 /� ) E 1 + cos (αx 1 /� ) E 3 , (23)

Evidently, the configuration � = (ϕ, t ) represents the same deformation of the ribbon as ( ϕ0 , 
) in Eq. (9) — the edge x 1 = 0

is held clamped, the edge x 1 = � is rotated by an angle α and the mid surface ϕ( �0 ) represents a cylinder of radius r with

axis parallel to E 2 . As required, directors in Eq. (23) remain straight and unextended from the reference irrespective of the

value of α. 

For the deformation defined by Eqs. (22) and (23) , let us examine the strain measures in Eq. (19) . Since 

g 1 = ϕ , 1 = cos (αx 1 /� ) E 1 + sin (αx 1 /� ) E 3 and g 2 = ϕ , 2 = E 2 , 

we find that g i · g j = δi j . Hence all components of the membrane strain ε vanish, demonstrating the fact that ϕ is an isom-

etry. Since directors are orthogonal to the mid surface by virtue of Eqs. (22) and (23) , we have g · t = 0 so that transverse
i 
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shear strains vanish as well. Noting that t , 1 = −( cos (αx 1 /� ) E 1 + sin (αx 1 /� ) E 3 ) / r and t , 2 = 0 , components of the bending

strain follow as 

κ11 = g 1 · t , 1 = −1 / r , κ12 = g 1 · t , 2 = 0 = κ21 and κ22 = g 2 · t , 2 = 0 . (24) 

Eq. (24) indicates, as expected, a uniform bending strain κ11 whose magnitude equals the curvature 1/r of the deformed

cylindrical surface. 

Relation to plate models. Next, if we assume that directors in Eq. (18) undergo only small rotations, say by angles ψ 2 

and −ψ 1 about the E 1 and E 2 axes respectively, material lines along E 3 deform as 

E 3 �→ t ≈
( 

I + 

[ 

0 0 −ψ 1 

0 0 −ψ 2 

ψ 1 ψ 2 0 

] ) 

E 3 = −ψ 1 E 1 − ψ 2 E 2 + E 3 . (25) 

Denoting the mid surface displacement by u (x 1 , x 2 ) ∈ R 

3 so that ϕ(x 1 , x 2 ) = (x 1 , x 2 ) + u (x 1 , x 2 ) , and substituting

Eq. (25) into Eq. (18) , we get the displacement field in the Cosserat plate model to be of the form 

U (x 1 , x 2 , x 3 ) = (u 1 (x 1 , x 2 ) − x 3 ψ 1 (x 1 , x 2 )) E 1 + (u 2 (x 1 , x 2 ) − x 3 ψ 2 (x 1 , x 2 )) E 2 + (x 3 + u 3 (x 1 , x 2 )) E 3 , (26) 

which is precisely the kinematics assumed in the linear Reissner-Mindlin plate theory. If we additionally assume that dis-

placements u remain small and that directors remain normal to the mid surface during deformation in Eq. (26) , we can set

ψ 1 = u 3 , 1 and ψ 2 = u 3 , 2 in Eq. (26) to get 

U (x 1 , x 2 , x 3 ) = (u 1 (x 1 , x 2 ) − x 3 u 3 , 1 (x 1 , x 2 )) E 1 + (u 2 (x 1 , x 2 ) − x 3 u 3 , 2 (x 1 , x 2 )) E 2 + (x 3 + u 3 (x 1 , x 2 )) E 3 , (27) 

which is the form of the displacement field assumed in the classical Kirchhoff-Love and von Kármán plate theories. 

To help highlight the approximations invoked in the strain-displacement relationship in von Kármán model in Eq. (2) ,

let us examine the membrane and bending strains in Eq. (19) for the particular form of the displacement field in Eq. (27) .

Identifying coordinates of the deformed mid surface in Eq. (27) as 

ϕ(x 1 , x 2 ) = (x 1 + u 1 (x 1 , x 2 ) − x 3 u 3 , 1 (x 1 , x 2 )) E 1 + (x 2 + u 2 (x 1 , x 2 ) − x 3 u 3 , 2 (x 1 , x 2 ) E 2 ) + u 3 (x 1 , x 2 ) E 3 , 

we get {
g 1 = ϕ , 1 = ( 1 + u 1 , 1 − x 3 u 3 , 11 ) E 1 + ( u 2 , 1 − x 3 u 3 , 12 ) E 2 + u 3 , 1 E 3 , 

g 2 = ϕ , 2 = ( u 1 , 2 − x 3 u 3 , 12 ) E 1 + ( 1 + u 2 , 2 − x 3 u 3 , 22 ) E 2 + u 3 , 2 E 3 , 

from where the membrane strain components given by Eq. (19) follow as 

ε 11 = 

1 

2 

(
(1 + u 1 , 1 − x 3 u 3 , 11 ) 

2 + (u 2 , 1 − x 3 u 3 , 12 ) 
2 + u 

2 
3 , 1 − 1 

)
, 

ε 12 = 

1 

2 

( (1 + u 1 , 1 − x 3 u 3 , 11 )(u 1 , 2 − x 3 u 3 , 12 ) + (u 2 , 1 − x 3 u 3 , 12 )(1 + u 2 , 2 − x 3 u 3 , 22 ) + u 3 , 1 u 3 , 2 ) , 

ε 22 = 

1 

2 

(
(u 1 , 2 − x 3 u 3 , 12 ) 

2 + (1 + u 2 , 2 − x 3 u 3 , 22 ) 
2 + u 

2 
3 , 2 − 1 

)
. (28) 

Neglecting quadratic terms involving in-plane displacement derivatives, namely, terms of the form 

u 2 1 ,α, u 2 2 ,α, u 1 ,αu 2 ,β , u 1 ,αu 3 ,βμ, u 2 ,αu 3 ,βμ for α, β, μ = 1 , 2 , and quadratic terms involving second derivatives of the out

of plane displacements, namely, terms of the form u 3, αμu 3, βμ, Eq. (28) reduces to 

ε 11 ≈ u 1 , 1 + 

1 

2 

u 

2 
3 , 1 , ε 12 ≈ 1 

2 

( u 1 , 2 + u 2 , 1 ) + 

1 

2 

u 3 , 1 u 3 , 2 , and ε 22 ≈ u 2 , 2 + 

1 

2 

u 

2 
3 , 2 , (29) 

which is the form of the membrane strain in the von Kármán model, see terms independent of x 3 in Eq. (2) . The non trivial

aspect of the approximations leading from Eqs. (28) to (29) is the retention of quadratic terms of the form u 3, αu 3, β , which

is the only source of nonlinearity in the strain-displacement relationship ( Ciarlet, 1980 ). Evaluating the components of the

bending strains κ in Eq. (19) , while employing the approximate form n ≈ −u 3 , 1 E 1 − u 3 , 2 E 2 + E 3 for the normal to the mid

surface warranted by the assumptions of small displacements and rotations, and neglecting quadratic terms of the form

mentioned above, we get 

κ11 = ϕ , 1 · n , 1 = −(1 + u 1 , 1 − x 3 u 3 , 11 ) u 3 , 11 − (u 2 , 1 − x 3 u 3 , 12 ) u 3 , 12 ≈ −u 3 , 11 , 

κ12 = ϕ , 1 · n , 2 = −(1 + u 1 , 1 − x 3 u 3 , 11 ) u 3 , 12 − (u 2 , 1 − x 3 u 3 , 12 ) u 3 , 22 ≈ −u 3 , 12 

κ22 = ϕ , 2 · n , 2 = −(u 1 , 2 − x 3 u 3 , 12 ) u 3 , 11 − (1 + u 2 , 2 − x 3 u 3 , 22 ) u 3 , 22 ≈ −u 3 , 22 , (30) 

which is indeed the bending strain in the von Kármán and Kirchhoff-Love models, see terms depending on x 3 in Eq. (2) .

Linearizing the membrane strain in Eq. (28) entirely yields 

ε 11 ≈ u 1 , 1 , ε 12 ≈ 1 

2 

(u 1 , 2 + u 2 , 1 ) and ε 22 ≈ u 2 , 2 , 

which is the membrane strain in the Kirchhoff-Love model. 
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Fig. 12. Predictions of the Cosserat plate model in the transversely displaced annulus experiment. The mean curvature profile shown in (b) is computed 

using Eq. (34) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experimental validation 

We revisit the experiments discussed in Sections 3 and 4 to examine the performance of the Cosserat plate theory as a

model for elastic ribbons. The observations in Section 5.1 show that the 1-director Cosserat plate model subsumes the two

ribbon models considered previously as special cases— both the kinematics as well as the strain-displacement relationship

of Cosserat plates are evident generalizations. From the outset therefore, we expect the Cosserat plate model to outperform

the alternatives in comparisons with experimental measurements. 

Transversely displaced annulus 

Fig. 12 a compares the prediction of the Cosserat plate model with the experimentally measured shape in the transversely

displaced annular ribbon experiment when the separation between the edges is 
z = 100 mm . The model prediction in

orange closely follows the measurement. This is not surprising, considering the fact that both the von Kármán and rod

models predict the ribbon’s deformation well in this case (see Figs. 3 b and 8 a). 

Inspecting strain magnitudes from the simulation confirms that transverse shear strains to be negligibly small, as ex-

pected. Hence, the computed director field coincides with the unit normal n to the deformed mid surface. With this ansatz,

we compute the mean curvature of the mid surface as 

H(x 1 , x 2 ) = 

1 

2 

eG + gE − 2 f F 

EG − F 2 
, (31)

where the components of the first fundamental form follow directly from the computed membrane strains as 

I = 

[
E F 

F G 

]
= 

[
g 1 · g 1 g 1 · g 2 

· g 2 · g 2 

]
= 

[
1 + ε 11 ε 12 

· 1 + ε 22 

]
⇒ E = 1 + ε 11 , F = ε 12 , G = 1 + ε 22 . (32)

Assuming n ≈ t , the second fundamental form is computed using the components of the bending strain as 

II = 

[
e f 

f g 

]
≈

[
g 1 · t , 1 g 1 · t , 2 

· g 2 · t , 2 

]
= 

[
κ11 κ12 

· κ22 

]
⇒ e = κ11 , f = κ12 , g = κ22 (33)

Substituting Eqs. (32) and 33 in Eq. (31) , we get 

H = 

1 

2 

κ11 (1 + ε 22 ) + κ22 (1 + ε 11 ) − 2 κ12 ε 12 

(1 + ε 11 )(1 + ε 22 ) − ε 2 
12 

. (34)

Fig. 12 b shows the profile of the mean curvature computed along the centerline of the ribbon using Eq. (34) . While all three

models indicated in the figure follow the experimental profile well, the prediction of the Cosserat plate appears to be the

closest match. Both in this experiment, as well as in the case of the pinched semi- annulus discussed next, simulations show

membrane strains to be negligibly small. As a result, H computed using Eq. (34) is well approximated by half of the trace

of the bending strain (κ11 + κ22 ) / 2 . We do not employ this approximation in our calculations, however. 

Pinched semi annulus 

Fig. 13 a compares predictions of the Cosserat plate model with measured shapes for the pinched semi annular ribbon

experiment. The predictions closely follow the measurements at all separation distances shown. Fig. 13 b examines the dis-

placement components at the mid point along the centerline of the ribbon, and shows that the prediction of the Cosserat

plate model adheres closely to the experimental measurements over a large range of edge separations. In fact, the lower

bound of 20 mm for 
y in the plot is the limiting separation at which the two edges of the ribbon abut each other. The

prediction of the Cosserat rod model is far less accurate for the component u . To help visualize the displacement errors
1 
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Fig. 13. Examining predictions of the Cosserat plate model in the pinched semi annulus experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

seen in the plot, Fig. 13 c shows the centerlines of the ribbon from the experiment and from simulations at 
y = 80 mm .

Fig. 13 d compares mean curvatures along the centerline computed from simulations and from experimental measurements.

The plate model outperforms the rod model here as well. 

Unfurled annulus 

Fig. 14 examines the predictions of the Cosserat plate model in the unfurled annulus experiment. We include predictions

of the rod model previously shown in Figs. 9 b and c to help compare its accuracy with the Cosserat plate model. Fig. 14 a

shows that the ribbon shapes computed using the plate model follow the measured shapes well. 

The plots in Fig. 14 b show that the mean curvature along the centerline computed by the plate model captures all details

found from the experimental data, including zero crossings and extrema. The model correctly shows that the ribbon prefers

to alternate between mean curvatures of opposite signs with approximately equal magnitude, and that the frequency of

alternation increases with the separation 
y . The rod model, on the otherhand, incorrectly predicts localized curvatures

at the clamps and at the center, and a nearly constant but small curvature elsewhere. Fig. 15 a shows that the centerline

predicted at a large separation of 
y = 470 mm by the rod model has the appearance of a helix, with a change in chirality at

the mid point and sharp bends at the clamped ends. Both the experiment and the Cosserat plate model predict qualitatively

different shapes. 

6. Observations on the shape of a pinched semi annulus 

With the objective of aiding a deeper analysis of the problem, we record a few observations on the shapes of ribbon

centerlines in the pinched semi annulus experiment. Specifically, we identify plausible relationships between the mean ra-

dius R, the imposed displacement and the mean curvature H along the centerline of a pinched semi annular ribbon using

simulations of the Cosserat plate model. Relying on numerical simulations helps to avoid the large number of physical mea-

surements that would be required for the ensuing discussions, as well as to evade ambiguities stemming from noise and

data fitting procedures. Furthermore, for each combination of ribbon radius and width, experimental measurements require

identifying displacement regimes over which the influence of gravity is sufficiently small, cf. Plaut and Virgin (2004) . Grav-

ity effects are unambiguously eliminated in numerical simulations. Indeed, the close agreement between mean curvature

profiles computed from shape measurements and from simulations over a broad range of displacements shown in Fig. 16 ,

albeit for the specific case of a ribbon with dimensions R = 90 mm and w = 20 mm , warrants considering model simulations

as convenient virtual experiments . 
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Fig. 14. Examining the predictive accuracy of the Cosserat plate model in the unfurled annulus experiment. 

Fig. 15. Evaluating accuracies of predicted ribbon centerlines in the unfurled annulus experiment. The image in (a) reveals qualitative errors in the shape 

predicted by the Cosserat rod model. Plot (b) shows that the rod model predicts a lower energy than the plate model despite identifying an inaccurate 

solution. This suggests that the kinematic assumptions invoked in the rod model ignores important energetic contributions. Jumps in the energy observed 

in the plate model are related to transitions between solution branches discussed in Section 7 . 

 

 

 

 

 

 

 

 

 

In the following, we non dimensionalize the imposed displacement as δ = (2R − 
y ) / R , where the control parameter 
y

denotes the separation between the ends of the ribbon. In the unloaded state therefore, 
y = 2R and δ = 0 . The maximum

displacement is limited to δ = (2 − w/ R) , when the two displaced ends of the ribbon contact each other at the center. 

(i) For semi annular ribbons having width w = 20 mm , Fig. 17 plots the non dimensionalized mean curvature H mid at the

mid point of the centerline as a function of the non dimensionalized displacement δ. We find that over a reasonably

large range of mean radii, the relationship between δ and H mid is approximately independent of R, leading us to con-

clude that H mid = H mid (δ) , i.e., that H mid depends on R only through δ. The specific values of the mean radii chosen

in the plot, ranging from 70 to 120 mm, are not limiting values but simply represent ones for which simulations were

performed. 

(ii) The nature of the relationship δ �→ H mid (δ) in Fig. 17 is noticeably different for small and large values of δ, i.e., close

to the bifurcation from the planar state, and far away from it. An inspection reveals that for δ less than about 0.3,
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Fig. 16. Comparison of non dimensionalized mean curvature profiles computed from shape measurements, and from Cosserat plate simulations for the 

pinched semi annulus experiment (R = 90 mm , w = 20 mm ) over a broad range of displacements δ = (2R − 
y ) / R . 

Fig. 17. For ribbons of varying mean radii but fixed width, the plot shows the dependence of the mean curvature at the mid point of the centerline (H mid ) 

on the imposed displacement ( δ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H mid (δ) varies approximately as 
√ 

δ. The inset in the plot identifies the exponent of δ to 0.52 based on an exponential

fit over points having 0.1 ≤ δ ≤ 0.3. For δ larger than about 0.5, δ �→ H mid (δ) is approximately linear. Coincidentally,

the transition from nonlinear to linear dependence of H mid on δ occurs in the vicinity of H mid = 1 , i.e., where the

mean curvature falls below 1/R. 

(iii) Next, we examine whether the nature of the relationship δ �→ H mid (δ) observed in Fig. 17 extends to mean curvature

profiles along the entire centerline, i.e., to 0 ≤ θ ≤ 180 ◦. To this end, Fig. 18 a shows profiles of H as a function of

θ for a representative set of displacements δ = 0 . 1 , 0 . 2 , 0 . 3 and 0.4 computed for the set of ribbons considered in

Fig. 17 . Consistent with our previous observation in (i), we find that for each δ, the profile of H is largely independent

of R. This suggests that H = H(θ, δ) , i.e., that H depends on R only through δ. In light of the scaling H mid ∼ δ0 . 52 

observed in Fig. 17 for small δ, Fig. 18 b plots the scaled mean curvature H/δ0 . 52 , which, to a good degree of approx-

imation, appears to be independent of δ. Hence, for sufficiently small δ, the mean curvature along the centerline is

well approximated by a variable-separable functional form H(θ, δ) ≈ f (θ ) δ0 . 52 . 

(iv) Fig. 19 a shows profiles of H along the centerline for larger δ ranging from 0.6 to 1.4, which, again, appear to be

independent of R. Hence, we assume that H = H(θ, δ) in this regime as well. Fig. 17 then suggests postulating a

linear dependence for H(θ, δ) on δ. Towards verifying this possibility, we compute 

F(θ, δ) = 

∂H 

∂δ
(θ, δ) ≈ H(θ, δ + 1 / R) − H(θ, δ) 

(1 / R) 
(35a) 

and G(θ, δ) = H(θ, δ) − F(θ, δ) . (35b) 

The calculation in Eq. (35a) is a finite difference approximation of ∂ H/∂ δ computed using finite element simula-

tions performed with 1 mm displacement increments. Fig. 19 b shows the profiles of F and G computed according to

Eq. (35) for a large range of displacements in the regime δ ≥ 0.75, and for mean radii ranging from 70 to 120 mm.
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Fig. 18. Examining the dependence of H on δ for sufficiently small values δ. Plot (a) shows that H depends on R only through δ. Then, profiles of the 

scaled mean curvature plotted in (b) suggests the approximate functional form H(θ, δ) ≈ f (θ ) δ0 . 52 for the mean curvature along the centerline. 

Fig. 19. Plot (a) shows profiles of H along the centerline for representative values of displacements in the regime δ ≥ 0.6. The profiles remain unchanged 

with radius, leading to the conclusion that H depends on R only through δ. Then, the near independence of F = ∂ H/∂ δ and G = H − F on δ seen in (b) 

suggests the functional form H(θ, δ) ≈ F(θ ) δ + G(θ ) , for sufficiently large δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noting the symmetry of H, and consequently of F and G about θ = 90 ◦, Fig. 19 b shows profiles of F, G over com-

plementary halves of the centerline. To a good degree of approximation, both F and G are independent of δ, thus

supporting the ansatz H(θ, δ) ≈ F(θ ) δ + G(θ ) in the regime where δ is sufficiently large. 

(v) The functional forms for H identified in (iii) and (iv) for small and large δ respectively, are consistent with the ob-

servations in Figs. 18 a and 19 a that the locations of zero crossings in the mean curvature profiles remain unchanged

with δ. Similarly, both relationships ensure monotonic growth in mean curvature magnitudes with the imposed dis-

placement. 

(vi) It is worth noting that the qualitative difference in the relationship δ �→ H mid (δ) for small and large δ observed in

Fig. 17 , also manifests in the shapes of the profiles seen in Figs. 18 a and 19 a. 

(vii) Conspicuously missing in our discussions thus far, are considerations on the influence of the width of the ribbon.

We expect w , and in particular the aspect ratio w /R, to be a significant parameter in determining ribbon shapes

during deformation. Notice that by fixing w (at 20 mm) and changing R, the aspect ratio w /R is not held constant in

the data presented in Figs. 17–19 . As we discuss next, ignoring the influence of w /R in postulating the relationships

above is not an oversight, but an approximation. Fig. 20 a examines the dependence of H mid on δ for ribbons having

identical mean radius but different widths. For definiteness, we choose R = 90 mm and let the width range from 2.5

to 40 mm. While unambiguously confirming the influence of w /R on the deformation, the plot also shows that H mid is

increasingly insensitive to w /R at sufficiently large values of the parameter, notably beyond the ratio w/ R = 15 / 90 =
1 / 6 . Fig. 20 b confirms that this insensitivity of H to w /R is not restricted to the mid point of the centerline, but

extends to the profile of H along the entire centerline. The choice of the mean radius R = 90 mm in Fig. 20 is not

especially significant— we have verified these conclusions for ribbons having mean radii ranging from 70 to 120 mm. 

In summary, simulations of the pinched semi annulus experiment using the Cosserat plate model helps identify ap-

proximate relationships between the displacement and the mean curvature distribution along centerlines of ribbons with
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Fig. 20. Examining the influence of the aspect ratio w /R on the mean curvature along the centerline by fixing the mean radius at 90 mm and varying the 

width from 2.5 to 40 mm. The plots show that H is approximately insensitive to w /R at sufficiently large values of the parameter.. 

Fig. 21. Illustration of the procedure to identify deformations in which the effect of self weight is small in the unfurled annulus experiment. Rotating the 

clamps holding the ribbon edges by 180 ◦ as shown, helps compare a configuration in which the gravitational force acts towards the line joining the centers 

of the clamps, with another in which the force acts away from it. These configurations are labelled as “up” and “down,” respectively. We deem the effect 

of gravity to be small if the ribbon has nearly identical shapes in the two configurations. We follow an identical procedure for the pinched semi annulus 

experiment as well. 

 

 

 

 

 

 

 

 

 

 

 

sufficiently large aspect ratios w /R. Although the parametric studies shown here are not a substitute for a rigorous analysis,

we expect the observations pointed out to serve as useful hints in modeling the problem. 

7. Observations from unfurling an annular ribbon 

We devote this section to discussing a few observations from the unfurled annulus experiment and its simulation using

the Cosserat plate model. A short video illustrating these findings is provided as supplementary material. 

(i) We mentioned in Section 2 that for the purpose of comparing experimental measurements with simulations that

do not include the effect of self weight, it is necessary to identify displacement regimes over which the influence

of gravity is measurably small. In the context of the unfurled annulus experiment, we expect to find such a regime

for two reasons. First, the ribbon (geometrically) stiffens with increasing separation between the clamps, causing

the deformation induced by self weight to become progressively smaller. Second, the out-of-plane component of the

displacement decreases with increasing 
y . Consequently, the twisting moment of the gravitational force about the

E 2 axis reduces with increasing 
y . Fig. 21 illustrates the procedure we adopt to identify ribbon configurations that

are insensitive to gravity effects. We rely on the fact that if the influence of gravity is negligible, then the deformation

of the ribbon should be symmetric about the (horizontal) plane spanned by the E − E axes. Hence, we measure
1 2 
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Fig. 22. Number of zero crossings in the mean curvature increases abruptly with loading in the unfurled ribbon experiment. These transitions often 

manifest as displacement jumps during simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two sets of deformations in which the orientations of the clamped ribbon edges differ by 180 ◦. These configurations

are labelled as “up” and “down” in the figure and depicted in green and brown colors, respectively. Notice that the

gravitational force acts towards the line joining the centers of the clamps in the former, and away from it in the

latter. By (digitally) reflecting measured ribbon shapes about the horizontal plane, we compare the deformations in

the two configurations. At 
y = 150 and 200 mm, the shapes measured in the “up” and “down” configurations are

noticeably different, clearly demonstrating that the effect of self-weight is significant at these displacements. At the

larger distance 
y = 250 mm where the two configurations practically overlap, we deem the effect of gravity to be

small. 

(ii) In Fig. 14 b, notice that the number of zero crossings in the mean curvature changes with loading. At 
y =
250 mm , 300 mm and 470 mm, the experimental data shows 2, 6 and 10 zero crossings, respectively. The transition

between ribbon configurations having different number of such “inflection” points often happens abruptly in our

Cosserat plate simulations. To illustrate this point, Fig. 22 a shows the evolution of the out-of-plane component of the

displacement at the midpoint of the centerline of the ribbon. In the simulation labeled as loading path 1, the dis-

placement jumps from state A1 to B1 at 
y = 321 mm . Similar jumps occur from A2 to B2, and A3 to B3 at distances

448 mm and 486 mm, respectively. Contours of the mean curvature shown in Fig. 22 b confirm that the transitions

seen in Fig. 22 a correspond to changes in the number of zero crossings in the mean curvature. For ease of visualiza-

tion, we show contours over both the reference and deformed configurations. Blue contours correspond to negative

values and red ones to positive values of mean curvature. In Fig. 22 b, we see that the mean curvature in state A1 has

two zero crossings. A small increase in 
y causes the ribbon to jump to state B1 having six zero crossings, which
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Fig. 23. Projections of centerline shapes predicted by the Cosserat plate model on the E 1 − E 3 and E 2 − E 3 planes. Apparent kinks in the profile in the 

former correlate well with transitions in the number of zero crossings in the mean curvature of the ribbon. The plots also reveal extensive twist in the 

ribbon to accommodate the imposed displacement. 

Fig. 24. Experimental demonstration of multiple stable equilibria in the unfurled annulus experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

persists until the ribbon reaches state A2 at 
y = 448 mm . The ribbon then transitions to state B2 having 10 zero

crossings. In the same manner, at 
y = 486 mm , the ribbon transitions from state A3 having 10 zero crossings to

state B3 having 14 zero crossings. Each of these three transitions is accompanied by a decrease in the total strain en-

ergy of the ribbon, see Fig. 15 b. In particular, the strain energy at state B1 is smaller than at A1, at state B2 is smaller

than at A2, and so on. 

(iii) Fig. 22 a also shows an alternative loading path in dashed lines, labeled as path 2. The simulations shown in Fig. 14 in

fact correspond to loading path 2. The transition from two to six zero crossings in path 2 occurs at the point A0

( 
y ≈ 277 mm) where paths 1 and 2 diverge. Unlike loading path 1, the transition at A0 in path 2 occurs without a

noticeable jump in the displacement. Inspecting the number of zero crossings in the mean curvature on either side

of A0 suggests that paths 1 and 2 are solution branches that bifurcate at A0. Without special techniques to detect

bifurcations or instabilities in our simulations/experiments, it is unfortunately not possible to examine the real nature

of transitions in the mean curvature, i.e., whether they occur smoothly or through an instability. 

(iv) Fig. 23 shows projections of the ribbon’s centerline on the E 1 − E 3 and E 2 − E 3 planes computed using the Cosserat

plate model. Appearance of apparent kinks in the projection on the E 1 − E 3 plane correlate well with transitions in

the number of zero crossings in the mean curvature— the first kink develops after the transition from two to six zero

crossings ( 
y > 322 mm), the second after the transition from six to ten zero crossings ( 
y > 449 mm), and so on. 

(v) The spiral-like trajectory of the mid point of the centerline in the E 1 − E 3 plane and the progressive narrowing of the

profile along the E 1 and E 3 axes observed in Fig. 23 show that the ribbon accommodates increasing amount of the

imposed stretch 
y by twisting about the E 2 axis. The extent of twist is exemplified in the figure by the observation

that the out-of-plane displacement (along E 3 ) of the mid point changes sign twice over the range of 
y considered,

namely, at 
y ≈ 241 mm and 478 mm. In fact, the mid point completes a full revolution about the E 2 axis as 
y is

increased from 241 to 478 mm. 

(vi) The appearance of two, six, ten and fourteen zero crossings in the mean curvature can be rationalized as follows.

Let us assume that transitions in the mean curvature are accompanied by reasonably small perturbations in the

deformation itself. In particular, let us assume that the sign of the mean curvature at the clamps and at the cen-

ter of the ribbon remain unchanged after each transition. Fig. 22 suggests that this is indeed the case— the mean

curvature remains negative (blue) at the clamps and positive (red) at the center before and after each transition.

In fact, these signs remain unchanged throughout the deformation. Then, symmetry of the deformation about the

E 1 − E 3 plane requires that the mean curvature possess an odd number of zero transitions, say of the form 2 k + 1

for k = 0 , 1 , 2 , . . . , on either side of the symmetry plane. Hence, the total number of zero transitions is of the form

2(2 k + 1) for k = 0 , 1 , 2 , . . . . Then, the number of transitions observed in Figs. 14 b and 22 , namely, two, six, ten and

fourteen, correspond to setting k = 0 , 1 , 2 and 3, respectively. 
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Fig. 25. Pairwise comparisons of mean curvature distributions in the six measured stable configurations of the ribbon shown in Fig. 24 . These contours 

suggest that mean curvatures may help to encode different solution branches and reveal how to transition from one branch to another, see item (viii) in 

the text. 

Fig. 26. At large separation between the edges, the ribbon accommodates a state of high tension by focusing energy at vertices along the inner circumfer- 

ence. Large values of W = 2H 

2 − K at these vertices reveal non trivial Gaussian curvatures there, and in turn, local extension of the material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(vii) While Fig. 22 a hints at the possibility of multiple equilibrium solutions, Fig. 24 provides compelling experimental

evidence. For ease of visualization, Fig. 24 shows six among many more distinct configurations measured experimen-

tally. The configurations shown are labeled as states A through F and are depicted in different colors. The specific

value of the edge separation 
y = 460 mm used for the demonstration is not particularly significant— we find mul-

tiple equilibria at smaller as well as at larger distances. We realize the different states shown by manually adjusting

the ribbon without altering the boundary conditions, and verify the stability of each state by subjecting the ribbon to

small perturbations. Presumably, each of these states correspond to a different stable solution branch. The multiplicity

of solutions observed serves as a reminder of the importance of geometric nonlinearity in ribbon mechanics. 

(viii) To compare features of the different configurations seen in Fig. 24 , and in turn, of solution branches they belong to, we

examine their mean curvature distributions in Fig. 25 . For ease of visualization, we show contours over both reference

and deformed configurations for each state and label corresponding landmark points. In the following, we examine

the six states A through F in a pairwise manner and discuss how transformations between them are achieved. 

(a) Plot Fig. 25 a compares state A having six zero crossings in the mean curvature, with state B having eight. The

transition from A to B is achieved by altering the region of the ribbon demarcated by the zero crossings at points

3 and 6 in state A. The central lobe of the ribbon is inverted to flip the sign of the curvature there, and two new

zero crossings at 9 ′ and 10 ′ are introduced on either side of the E 1 − E 3 symmetry plane. States A and B agree in

shape between the clamps and the landmarks 3 and 6 respectively, but differ elsewhere. 

(b) By virtue of the boundary conditions imposed in the experiment, solutions enjoy reflection symmetry about the

E 1 − E 2 plane. An example of this symmetry is provided in plot (b), which shows that states B and C are simply

mirror images of each other about the E − E plane. A consequence of this reflection symmetry is that curvatures
1 2 
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in the two states are equal in magnitude but opposite in sign. Hence, colors of curvature contours in B and C are

complementary to each other. 

(c) An alternative mode of modifying mean curvatures without altering the number of zero crossings is shown in plot

(c). Therein, the transformation from state C to D is achieved by shifting zero crossings 4 and 7 in C to 4 ′ and 7 ′ 
in D. 

(d) The transformation from state D to E in plot (d) mimics that shown in (a). We invert the curvature at the center

of the ribbon between points 4 and 7 in state D, and introduce new new zero crossings 11 ′ and 12 ′ . State E with

ten zero crossings in fact belongs to the solution branch B2-A3 in Fig. 22 a. 

(e) Plot (e) shows the transformation from state E to F is achieved in a manner similar to that in (a) and (d). This time,

however, we introduce two new zero crossings on either side of the E 1 − E 2 symmetry plane, so that the sign of

the mean curvature at the center remains unchanged. The number of zero crossings hence jumps from ten in E to

fourteen in F. Recall that we observe a similar transition in Fig. 22 a, albeit at a larger separation 
y = 486 mm . It

is likely therefore, that state F belongs to the solution branch containing B3 in Fig. 22 a. 

(f) While states A through F all enjoy reflection symmetry about the E 1 − E 3 plane, plot (f) shows configurations G

and H violating this symmetry. In state G, one of the zero crossings in the mean curvature occurs approximately

at the center of the ribbon at the landmark point 7, and curvatures at the two clamps have opposite signs. The

ribbon has different number of zero crossings on either side of the E 1 − E 3 plane in state H, namely, six on the

left side (2 ′ through 7 ′ ) and four on the right side (8 ′ through 11 ′ ). 
In summary, Figs. 23 and 24 show representative configurations sampling what appears to be a complex landscape of

multiple stable solution branches. The discussion above suggests that the signature of mean curvature distributions

over the reference configuration, i.e., the number and angular extents of positive and negative values, can serve as a

convenient way of encoding different solution branches. These signatures, in a rough sense, capture the microstructure

of the deformation, while also providing useful information about the perturbations necessary to transition from one

branch to another. 

(ix) The last observation we note concerns energy focusing at large edge separations. Although we have not measured the

forces required, hand held trials suggest that the tension in the ribbon increases steeply as 
y becomes comparable

to the perimeter of the inner circumference (2 πR i ≈ 502.7 mm). At these large tensions, extensibility of the ribbon

becomes important, and is likely to influence its deformation. As is often observed in slender structures, we expect

energetic considerations to dictate the ribbon to adopt a configuration with localized extension when subject to a

large tension. 

Fig. 26 shows one such instance, with the end separation set to 
y = 484 mm . Reiterating our previous observations,

we find here too that the prediction of the Cosserat plate model closely follows the measured shape while the cen-

terline of the rod solution shows large deviations. The ribbon configuration shown has ten zero crossings in the mean

curvature and belongs to the solution branch B2-A3 in Fig. 22 a. More pertinent to our point on energy focusing, the

Cosserat plate simulation for this large 
y reveals that the membrane component of the strain energy is compara-

ble to the bending component. To examine the significance of extensibility in the deformation, we show contours

of W = 2H 

2 − K in the figure, where K is the Gaussian curvature. We pick W, which is simply half of the sum of

squared principal curvatures, in favor of alternate energy densities because it is computable both from predicted and

measured ribbon shapes, besides being independent of material parameters. Both the experiment and the simulated

solution show sharp localization of W at vertices along the inner circumference of the ribbon where positive and neg-

ative contours of the mean curvature meet. The deformation observed in the experiment is fully reversible and these

vertices are not the result of any localized damage. Instead, steep gradients in the mean curvature at these vertices

induce non trivial Gaussian curvatures, which indirectly conveys local extension of the material. 

8. Summary and concluding remarks 

Summary. Table 1 succinctly summarizes our findings based on comparing model predictions with measured shapes

of ribbons and curvatures computed from them. The inadequacy of linear plate theories is not surprising, considering

the expected geometric nonlinearities in ribbon deformations. Fig. 4 b amply illustrates this point— the measured out of

plane displacement at the midpoint of the ribbon in the pinched semi annulus experiment varies nonlinearly (approxi-
Table 1 

A summary of our investigation of models for elastic ribbons. The ✗ / 
√ 

symbols indicate inaccurate/accurate predictions 

when compared with experimental measurements. 

Experiments → 

Transversely displaced annulus Pinched semi annulus Unfurled annulus ↓ Models 

Linear plates ✗ 

von Kármán plates 
√ 

✗ 

Cosserat rods 
√ √ 

✗ 

Cosserat plates 
√ √ √ 
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mately cubically) with progressive pinching. The same experiment also highlights pitfalls in adopting the von Kármán plate

model. While large deviations between predicted and measured shapes become conspicuous with increasing loading (i.e.,


y ) in Fig. 5 a, a lack of inner consistency in the model arising from finite rotations of material directors during defor-

mation is evident even at relatively small displacements. For instance, at 
y = 20 mm , representing a displacement of the

ends of the ribbon by one eighth of the inner diameter, Fig. 5 c shows that transverse displacement derivatives u 3,1 and

u 3,2 attain peak magnitudes of approximately 0.39 and 0.54 respectively, which contradict the assumptions underlying the

strain-displacement relationship in the model. Remedies for these shortcomings of the model are possible. As suggested in

Ben Amar and Pomeau (1997) ; Chopin et al. (2015) , linearizations inherent to the model can be performed about curvilinear

configurations different from the planar unstressed state. This, however, requires a priori knowledge about the deformation.

Unlike the von Kármán theory, the Cosserat rod model permits large displacements of the centerline and large rotations

of cross sections. These features ensure good predictions in the transversely displaced annulus and pinched semi annulus

experiments. The unfurled annulus experiment, however, exposes the consequences of assuming rigid kinematics for ribbon

cross sections. Although predictions show deviations comparable to the width of the ribbon, examining mean curvature dis-

tributions truly reveals the repercussions of lumping details of ribbon cross sections into stiffness parameters. Observations

such as the ones in Fig. 8 remain true for ribbons that are much narrower than the ones we have used in the experiments,

suggesting that the aspect ratios � / w and w / h of our ribbon samples are not unreasonable. Fig. 15 b in particular suggests

that rod models ignore important energetic contributions stemming from deformability of cross sections, leading to predic-

tions of non physical localization of strains/curvatures along the centerline. Indeed, the unfurled annular ribbon furnishes

an example in which the rod model, despite predicting a lower energy than the Cosserat plate, is the less accurate one. 

By permitting large surface displacements and director rotations, and by explicitly considering deformability along the

width of a ribbon, the Cosserat plate theory is an evident generalization of the models mentioned above. Its favorable

comparisons with ribbon shapes and curvatures realized in experiments is a testament to its geometrically exact nature

( Fox et al., 1993; Simo and Fox, 1989 ). We refer to Simo et al. (1990) ; Sze et al. (2004) for examples demonstrating its

performance in an “obstacle course” of benchmark problems for plate and shell structures. 

Remarks. We conclude the article with a few remarks. 

(i) It is hardly surprising that a fully geometrically nonlinear plate model that permits unrestricted displacements and

rotations outperforms a nonlinear rod or a weakly nonlinear plate theory. Indeed, referring back to Fig. 1 , it is fairly

obvious that the prediction of the 1-director Cosserat plate theory is expected to be the most accurate. The less

general theories are useful nevertheless, as many detailed studies in the literature have shown. Table 1 also suggests

the same. 

(ii) Discrepancies between predictions of von Kármán plate or 2-director Cosserat (effectively Kirchhoff) rod theories and

experimental measurements highlighted in Table 1 , is, again, foreseeable. Nevertheless, their widespread use in mod-

eling elastic ribbons appears to be at odds with the qualitative and quantitative inconsistencies observed in their

predictions for simplistic ribbon deformations. 

(iii) Comparisons between model predictions and experimental measurements shown here highlight the importance of

kinematic assumptions when modeling geometrically nonlinear deformations of ribbon-like structures. In particular,

we find that it is imperative for ribbon models to permit large displacements of the centerline, large rotations of

material directors, and to account for deformability of cross sections. While none of these considerations are startling

per se, they do not all usually manifest in conventional engineering applications employing beam and plate structures,

and consequently, in routinely used structural models. 

(iv) Despite what Table 1 may appear to suggest, we do not question the validities of the von Kármán plate and Cosserat

rod models. Insightful discussions to this end can be found in Audoly and Pomeau (2010 , Parts I, II). Instead, our find-

ings show that the kinematic assumptions underlying them are easily violated in simple experiments with ribbons. 

(v) Similarly, it is not our conclusion here that ribbons should be modeled as plates. Rather, our study identifies important

requirements for dedicated one-dimensional ribbon models. Of course, the utility of such reduced order models will

depend on additional factors that require deeper considerations— for instance, bounds on load magnitudes or on

aspect ratios of ribbons. Furthermore, we have shown here that predictions of the 1-director Cosserat plate model

can serve as a benchmark against which to compare those of models proposed in the literature ( Dias and Audoly,

2015; Hinz and Fried, 2015; Starostin and van der Heijden, 2007; Todres, 2015 ). We refer to ( Moore and Healey, 2019;

Yu and Hanna, 2019 ) for discussions of the challenges (and singularities) encountered in simulating these models.

Nevertheless, we expect more comprehensive numerical investigations of ribbon models to appear in the literature.

Ribbon models derived by dimensional reduction from von Kármán plate theories in Freddi et al. (2018) will benefit

from such comparisons as well, especially in light of our observations here. 

(vi) An important feature of the Cosserat plate model is that it does not impose inextensibility of the ribbon surface as a

constraint. Inextensibility is a reasonable assumption when predicting bending dominated deformations of thin struc-

tures, since energetic considerations eliminate the possibility of stretching or shear. It highlights the overwhelming

influence of geometry on deformations of slender structures. Nevertheless, it is an idealization. At sufficiently large

loads, ribbons develop defects and regions of irreversible damage by yielding or fracture. We showed an instance of

localized extension in an experiment using annular ribbons in Fig. 26 . In these scenarios, restricting deformations to

remain isometric can even result in a divergent energy density ( Witten, 2007 ). Deviations from strict inextensibility
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are easy to find in commonly used models as well. For example, as highlighted in Friesecke et al. (2006) , inextensibil-

ity is usually only enforced in a linearized sense in von Kármán plate theories. The constraint may not even manifest

in ribbon models derived by dimensional reduction from plate theories, despite being explicitly imposed in the latter

( Freddi et al., 2020 ). In models that permit combined states of bending and stretching, such as the Cosserat plate

theory, a large membrane stiffness functions as a penalty parameter that entices the ribbon to remain developable

in bending dominated deformations. Simultaneously, such models allow exploring configurations where contributions 

from stretching can be significant. 

(vii) Table 1 fully justifies our claim that annular ribbons exhibit a tunable degree of nonlinearity in response to simple

boundary conditions. By virtue of being predictable by the von Kármán model, we declare that the transversely dis-

placed annulus experiment as showing weak nonlinearity. In the same vein, the unfurled annulus shows a high degree

of nonlinearity by virtue of not being reproducible by either the von Kármán (not shown) or the Cosserat rod models.

We also draw attention to the magnitudes of curvatures realized in these experiments, which appear to correlate well

with the degree of nonlinearity. 

(viii) As discussed in Section 7 , annular ribbons exhibit a wide range of features including solution multiplicity, symmetry

breaking bifurcations and energy localization. The mean radius additionally endows them with a nonzero geodesic

curvature. These observations suggest that annular ribbons are interesting mechanical systems in their own right, and

their study will augment the existing literature on problems of Möbius strips and ribbons subjected to combined

states of tension and twist ( Chopin et al., 2015; Green, 1936 ). 

(ix) An important feature of the comparisons between experiments and model predictions we showed here is that they

are reproducible. The independence from material parameters, simplicity of the experimental setup and the absence

of ad hoc parameters render our comparisons amenable to independent verification. 

To facilitate reproducing the simulation results shown for the pinched semi annulus experiment using open source

or freely available softwares, we provide three well-documented scripts as supplementary material. The python script

provided reproduces predictions of the von Kármán plate model using the open source FEniCS library ( Alnæs et al.,

2015; Hale et al., 2018 ). Two Abaqus input files are provided to reproduce simulations of the Cosserat rod and

plate models using a free student edition of the software. We urge some caution in comparing our results for the

Cosserat models, which are computed using our group’s research code to faithfully reproduce the theory outlined in

Sections 4 and 5 , with Abaqus simulations that employ special modifications of strain measures. 

We also note that the experiments shown in the article can be reproduced with minimal infrastructure— in principle,

annular ribbons with edges taped to a ruler will suffice. A video demonstration of the unfurled annulus experiment

included as supplementary material amply demonstrates this point. Furthermore, shapes of deformed ribbons can be

accurately measured using computer vision techniques, whose implementations can be found in open source libraries

( Bradski, 20 0 0 ). 

A few directions for future inquiry are apparent at this point. Notice that it is possible for a model to predict the correct

shape for a ribbon but not the right deformation mapping. Indeed, composing a deformation map with any shape preserving

transformation alters the displacement and strain fields, but not the shape of the ribbon or any of its intrinsic properties.

It is therefore necessary to augment shape comparisons shown here with marker-based displacement measurements. Next,

coupling numerical approximation algorithms with bifurcation/continuation codes will help inspect solution branches and 

their stability ( Doedel et al., 2007 ). Such studies will likely reveal the significance of zero crossings in the mean curvature

observed in the unfurled annulus experiment in Section 7 . It is also prudent to examine the predictive accuracy of the

Cosserat plate model in problems that have been previously explored in the literature. In particular, we note the problem of

a rectangular ribbon subjected to tension and twist for which detailed experimental observations and analysis is available

( Chopin and Kudrolli, 2013; 2016; Kudrolli and Chopin, 2018 ). The problem of constructing Möbius strips by bending and

twisting rectangular ribbons ( Fosdick and Fried, 2016 ) has also be extensively studied, although experimental measurements

appear to be sparse. 

Appendix A. Approximate deformation mappings and ribbon centerlines from experimental point cloud 

measurements 

We have extensively used shapes of ribbon centerlines and mean curvature distributions along these centerlines com-

puted from experimental measurements to examine accuracies of ribbon models. Noting that ribbon centerlines are not

directly identifiable from point cloud measurements, we discuss an algorithm for this purpose. In fact, we outline an algo-

rithm addressing a more general problem— one of explicitly constructing an injective mapping between the reference and

deformed configurations of a ribbon, given only a point cloud sampling of the deformed ribbon’s shape measured experi-

mentally. 

Specifically, we seek a mapping ψ : B 0 → B from the reference configuration B 0 of a ribbon to its deformed configuration

B. The main idea consists in transforming this problem into one of parameterizing a triangulation T of B over B 0 . Such a

reformulation enables us to adopt algorithms available in the literature on computational geometry for mesh parameteriza-

tion to determine ψ . The challenge, however, lies in guaranteeing injectivity of ψ , which is an uncompromisable constraint
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Fig. 27. An illustrative example showing the construction of an injective map ψ : B 0 → B from the reference to the deformed configuration of a ribbon 

while using only a point cloud sampling P of B measured experimentally. The image on the far right shows that ψ helps to visualize mean curvatures 

over the reference configuration and to identify the centerline of the ribbon in a measured point cloud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for our purposes. In the following, we use the example of a semi annular ribbon depicted in Fig. 27 as an illustrative aid to

discuss the steps in the algorithm. 

(i) Starting with a measured point cloud P sampling the surface of a deformed ribbon, we first compute a triangulation T 
of P using the advancing front surface reconstruction algorithm of ( Cohen-Steiner and Da, 2004 ). The set triangulated

by T defines the deformed configuration B. 

(ii) Next, we introduce a trapezoidal intermediate configuration 

ˆ B 0 . The lengths of the sides ˆ x 1 − ˆ x 4 and 

ˆ x 2 − ˆ x 3 of the

trapezoid equal the inner and outer perimeters of the ribbon, namely πR i and πR 0 respectively, while its height is

set to equal the ribbon width w = R 0 − R i . In the following, we compute ˆ ψ : ˆ B 0 → B using a mesh parameterization

algorithm. Then, letting φ : B 0 → 

ˆ B 0 denote a simple “straightening” of the semi annulus B 0 into the trapezoid 

ˆ B 0 ,

we shall set ψ = 

ˆ ψ ◦ φ : B 0 → B. We construct ˆ ψ : ˆ B 0 → B itself in two steps— by prescribing its correspondence

between the boundaries ∂ ˆ B 0 and ∂B, and then by extending ˆ ψ to the interior as a map that parameterizes the mesh

T covering B over ˆ B 0 . 

(iii) For the purpose of defining ˆ ψ over ∂ ˆ B 0 , we partition the boundaries ∂ ˆ B 0 and ∂B into four corresponding components

as demarcated by their four corners. Referring to Fig. 27 , we denote the corners along ∂ ˆ B 0 by ˆ x 1 , . . . , ̂  x 4 and the four

boundary components they determine by ∂ ˆ B 0 ,i for i = 1 to 4. The analogous corners and components of ∂B are labeled

y 1 , . . . , y 4 and ∂B i for i = 1 to 4, respectively. 

Next, we prescribe the mapping between corresponding boundary components through their arc length parameters.

Specifically, consider the pair of corresponding boundary components ∂ ˆ B 0 ,i and ∂B i . Let these curves have lengths ˆ L i

and � i , and denote their arc length parameterizations by S �→ 

ˆ λi (S) and s �→ λi ( s ), respectively. We explicitly prescribe

the correspondence between ∂ ˆ B 0 ,i and ∂B i as ˆ ψ ( ̂  λi (S)) = λi (� i S/ ̂ L i ) for 0 ≤ S ≤ ˆ L i and for i = 1 to 4. 

(iv) We extend 

ˆ ψ to the interior of B 0 as a mapping that parameterizes the triangulation T of B over ˆ B 0 . For this,

we adopt the algorithm of Floater (2003) using mean value coordinates and its implementation provided in CGAL

( Alliez et al., 2019 ). In particular, the algorithm determines a triangulation 

ˆ T 0 over ˆ B 0 having identical connectivity as

T . It defines ˆ ψ as a homeomorphism from 

ˆ T 0 to T that is affine over each triangle in 

ˆ T 0 and is specified by its values

at the vertices of ˆ T 0 . 
(v) Finally, letting φ : B 0 → 

ˆ B 0 denote the canonical map that straightens out the semi annulus B 0 to the trapezoid 

ˆ B 0 ,

we set ψ � 

ˆ ψ ◦ φ. The main reason to introduce the intermediate configuration 

ˆ B 0 is to ensure injectivity of ψ . By

virtue of Tutte’s theorem on sufficient conditions for perfect graph matchings ( Tutte, 1963 ), it is guaranteed that the

mesh parameterization 

ˆ ψ : ˆ B 0 → B is injective if ˆ B 0 is convex. It is precisely for this reason that we parameterize

the mesh T over a trapezoidal domain 

ˆ B 0 rather than over the non convex domain B 0 . Then, injectivity of ˆ ψ and φ
guarantee that ψ = 

ˆ ψ ◦ φ is injective as well, just as required. 

Our final remark on the construction of ψ concerns its interpretation as an approximation of the actual deforma-

tion mapping ϕ : B 0 → B. This interpretation is supported (only) qualitatively by the observations that B = ψ(B 0 ) , ∂B i =
ψ (∂B i, 0 ) and y i = ψ (x i ) for each i = 1 to 4, just as is the case for ϕ. In fact, since the domain and range of ϕ and ψ are

identical and both maps are injective, it follows that there exists an automorphism χ : B 0 → B 0 such that ψ = ϕ ◦ χ, show-

ing that ϕ and ψ coincide up to a reparameterization of the reference configuration. This observation reveals that although

ψ defines the correct shape for the deformed configuration, in general, it determines an inaccurate metric. Since we expect

bending dominated deformations in our experiments to result in negligible membrane strains, we deliberately construct

ψ such that the metric it defines for B remains close to the identity. In particular, the arc length-based parameterization

of boundary components by ˆ ψ , and its extension to ˆ B 0 as a mesh parameterization that can be understood as a discrete

approximation of a conformal mapping from 

ˆ B to B, are choices that help to ensure that ψ results only in small metric
0 
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changes, and in turn, represents a useful approximation of ϕ for our purposes. In all our examples, we have verified this

feature of our construction for ψ by inspecting the triangulation T 0 over B 0 defined as the pre-image ψ 

−1 (T ) of T . That is,

T 0 has identical connectivity as T , while its vertices are located at the pre-images of corresponding vertices in T . Inspecting

triangle quality metrics reveals that triangles in T 0 are only mildly distorted from their respective counterparts in T . 
With an approximate deformation mapping ψ at hand, it is straightforward to pull back fields defined over the deformed

configuration to the reference. The inverse map ψ 

−1 = φ−1 ◦ ˆ ψ 

−1 is also explicitly computable owing to the fact that the

inverses of φ and 

ˆ ψ are both easily determined. Then, we map mean curvatures y ∈ B �→ H(y ) computed over the deformed

configuration as discussed in Section 2 , back to the reference as x ∈ B 0 �→ H(ψ 

−1 (y )) . Finally, we determine centerlines of

ribbons in the deformed configuration simply as the images of centerlines in the reference under ψ . 

Appendix B. Remarks on finite element simulations 

Computing finite element approximations of the geometrically nonlinear models considered in the article is a challenging

task. Since the literature on the topic is extensive, in the following, we briefly highlight the main ideas underlying our

simulations of the von Kármán, Cosserat rod and Cosserat plate models. The ensuing discussions are not intended to serve

as a comprehensive review, but as a reminder of some of the interesting issues that arise when simulating geometrically

nonlinear models. For each model, we point to references in the literature for detailed descriptions. 

B1. The von Kármán plate model 

Simulating the von Kármán plate model using a conforming finite element method requires constructing spaces of con-

tinuously differentiable (C 

1 ) functions to approximate the transverse displacement. This is more generally the case for plate

models that invoke the Kirchhoff assumption. It is indeed possible to construct C 

1 basis functions using specially designed

elements such as the Argyris triangle ( Ciarlet, 1978 ), using spline functions ( Kiendl et al., 2009 ), using special techniques

such as subdivision surfaces ( Cirak et al., 20 0 0 ), or by using mesh-independent interpolation methods ( Millán et al., 2011 ).

Mixed finite element methods help bypass the C 

1 requirement by independently approximating displacements and their

derivatives Boffi et al. (2013 , Chapter 10). We resort to a simpler strategy here, that consists in enforcing the Kirchhoff con-

dition weakly as a constraint, rather than by directly incorporating it in the set of admissible solutions. In essence, such an

approach amounts to introducing a transversely shearable version of the model discussed in Section 3.1 , while penalizing

the appearance of transverse shear strains in the computed approximations. Since the ribbons used in our examples are

thin, we expect transverse shear strains to be vanishingly small. Transverse shear is hence a numerical artifice, which we

verify to be negligibly small a posteriori. 

Specifically, we replace the 3-field problem for extremizing �vK to compute displacement components ( u 1 , u 2 , u 3 ) by

a 5-field formulation that additionally introduces (infinitesimal) rotations ψ = (ψ 1 , ψ 2 ) : �0 → R 

2 of material fibers along

the thickness of the ribbon. Satisfying the Kirchhoff assumption requires imposing the constraint ψ = ∇u 3 . To this end, we

replace the energy functional �vk by 

�′ = �vk 
m 

+ �′ 
s + �′ 

b , (36) 

where �′ 
b = 

1 

2 

∫ 
�0 

h 

3 

12 

(
G(ψ 1 , 2 + ψ 2 , 1 ) 

2 + 

E 

(1 − ν2 ) 
(ψ 

2 
1 , 1 + ψ 

2 
2 , 2 + 2 νψ 1 , 1 ψ 2 , 2 ) 

)
dx , 

�′ 
s = 

K 

2 

∫ 
�0 

(
(u 3 , 1 − ψ 1 ) 

2 + (u 3 , 2 − ψ 2 ) 
2 
)

dx , 

G = E / ((2(1 + ν)) is the shear modulus and K is a sufficiently large penalty parameter. Unlike Eqs. (3) , Eq. (36) does not

involve any second derivatives of transverse displacements. The term �′ 
s represents the energetic contribution arising from

transverse shear, which in our context, is interpreted as the penalty for deviations from the Kirchhoff constraint. In the

case when ψ coincides with ∇u 3 , implying satisfaction of the Kirchhoff condition, notice that �′ 
s = 0 , the bending term

�′ 
b 

coincides with �vk 
b 

, and the total energy �′ equals �vk . The penalty parameter K implicitly sets the tolerance on

permitted magnitudes of transverse shear strains. In our calculations, we set K = G h, so that �′ reduces to the strain energy

functional of a shearable von Kármán plate. While useful in its own right for modeling deformations of moderately thick

plates, we effectively em ploy it here for ease of finite element implementation by circumventing the Kirchhoff condition

when computing numerical simulations. We adopt the implementation of the model in Eq. (36) provided by the authors

of Hale et al. (2018) within the framework of the FEniCS open source library ( Alnæs et al., 2015 ). The implementation

employs partial selective reduced integration to avoid numerical locking, conforming piecewise quadratic triangle elements

for displacement components, linear triangle elements enriched with cubic bubble functions to approximate rotation fields,

and nonlinear solvers implemented in the PETSc library ( Balay and et al, 2019 ) for resolving the set of nonlinear equations

resulting from discretization. In all our examples, we verify convergence of finite element solutions using mesh refinement

as well as by elevating the degrees of polynomial shape functions used. 
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B2. The 2-director Cosserat rod model 

Recall from Section 4.1 that the configuration of a ribbon modeled as a Cosserat rod is specified as � = (ϕ 0 (S) , 
(S)) ∈
R 

3 × SO (3)) , where ϕ0 determines the location of the centerline and 
 orients the moving frame positioned at each point

along the centerline. One of the principal challenges in computing such configurations stems from the fact that rotations

S �→ 
( S ) do not belong to a linear space, but to the nonlinear manifold SO(3). The pointwise constraint 
T 
 = I high-

lights the non triviality of constructing finite element spaces for numerical approximation. These issues have been well

recognized in the literature, and are usually addressed by (locally) parameterizing rotations, using Euler angles for instance

( Stuelpnagel, 1964 ). The choice of coordinates is critical both in ensuring satisfaction of the constraint as well as in deriving

the equilibrium equations. Here, we adopt the approach of ( Simo and Vu-Quoc, 1986 ) using local exponential coordinates. 

To deduce the weak form satisfied by an extremizer of Eq. (7) , introduce the 1-parameter family of perturbed configura-

tions �ε = (ϕ 0 ε , 
ε ) 

ϕ 0 ε (S) = ϕ 0 (S) + ε η0 (S) and 
ε (S) = exp ( ε ̂  ϑ (S) )
(S) , (37)

where ε > 0 is the perturbation parameter, η0 ∈ R 

3 is an admissible variation of the centerline coordinates ϕ0 , the hat op-

erator ϑ �→ 

ˆ ϑ denotes the isomorphism from R 

3 to so(3), and ϑ ∈ R 

3 determines the skew-symmetric tensor field 

ˆ ϑ ∈ so (3)

representing an admissible variation of the frame rotation 
. The exponential map exp : so(3) → SO(3) in Eq. (37) trans-

forms infinitesimal rotations in the Lie algebra so(3) to finite rotations in the group SO(3). The perturbed rotation 
ε can

therefore be interpreted as the result of superimposing an infinitesimal rotation ̂

 ϑ on 
. Most significantly, Eq. (37) provides

a canonical construction for admissible configurations �ε in the vicinity of �, while permitting admissible variations η0 and

ϑ to belong to linear spaces. 

Armed with Eq. (37) , we compute the first variation of the energy functional in Eq. (7) as ( Simo and Vu-Quoc, 1986 ,

Section 4): 

G (�, ( η0 , ϑ )) � lim 

ε→ 0 

d 

dε 
�CR [�ε ] = 

∫ � 

S=0 

{
N · 
T 

(
d η0 

dS 
− ϑ × d ϕ 0 

dS 

)
+ M · 
T d ϑ 

dS 

}
dS, (38a)

where N = diag [ GA , GA , EA ] � and M = diag [ EI 1 , EI 2 , GJ ] K (38b)

are the resultant force and couple, respectively. The statement of virtual work in Eq. (38a) is the point of departure for

computing finite element approximations of �. While G is expectedly linear in the variations ( η0 , ϑ), it depends nonlinearly

on the configuration ( ϕ0 , 
). An added source of nonlinearity stems from 
 belonging to the nonlinear manifold SO(3).

Eq. (38b) serves as a reminder that nonlinearity in Eq. (38a) is purely geometric. 

We compute finite element approximations of � satisfying Eq. (38a) by computing configurational increments, rather

than by parameterizing the nonlinear manifold of admissible solutions ( Simo and Vu-Quoc, 1986 ). To this end, we linearize

G for an admissible increment 
� = (
ϕ 0 , 
θ) ∈ R 

3 × R 

3 as 

L [ G (�, ( η0 , ϑ ))] = G (�, ( η0 , ϑ )) + lim 

ε→ 0 

d 

dε 
G ((ϕ 0 + ε
ϕ 0 , exp (ε ̂  
θ)
) , ( η0 , ϑ )) ︸ ︷︷ ︸ 

DG (�, ( η, ϑ )) ·
�

, (39)

in which the notation DG ( �, ( η, ϑ)) · 
� is chosen to convey the linear dependence of the directional derivative on the

configuration increment 
�. For the purpose of finite element approximation, we interpret ( η0 , ϑ) to denote test functions

and ( 
ϕ0 , 
θ ) to denote the solution increment of interest. Observe that these test functions and increments belong to

linear spaces for which finite element subspaces can be constructed in the usual way. At a given configuration �, G ( �,

( η0 , ϑ)) represents the finite element residual while DG ( �, ( η0 , ϑ)) · 
� determines the stiffness matrix, see Simo and

Vu-Quoc (1986) for detailed expressions. In our calculations, we use function spaces spanned by piecewise cubic polyno-

mials defined over a uniform subdivision of the interval [0, � ] for both test functions and solution increments. Using cubic

polynomial elements helps circumvent issues of numerical locking, which is conventionally handled in low order elements

using reduced integration techniques. In this way, Eq. (39) yields a system of linear equations for the increment 
�. Then,

a configurational update mirroring Eq. (37) advances the configuration to the next iterate: 

ϕ 0 ← ϕ 0 + 
ϕ 0 and 
 ← exp ( ̂  
θ)
. (40)

In summary, the numerical algorithm to compute an equilibrium configuration for a prescribed set of Dirichlet boundary

conditions at the sections S = 0 and S = � consists of the following steps: start with an initial guess �0 = (ϕ 

0 
0 
, 
0 ) for

the configuration, assemble the residual vector and stiffness matrix, solve the linear system of equations in Eq. (39) to

determine the increment 
�0 , and update the configuration to �1 = (ϕ 

1 
0 
, 
1 ) = (ϕ 

0 
0 

+ 
ϕ 

0 , exp ( ̂  
θ0 )
0 ) . We repeat this

process iteratively to compute the sequence of configurations �2 , �3 , . . . and terminate the algorithm at the k th iteration

when the magnitude of the configurational increment 
�k is deemed to be sufficiently small, and set �k to be the finite

element approximation of the required equilibrium solution. 
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B3. The 1-director Cosserat plate model 

The configuration of a 1-director Cosserat plate is defined by the pairing � = (ϕ, t ) , where ϕ determines the location

of the mid surface and t defines the orientations of inextensible directors. Then, a key step in deducing the weak form

satisfied by extremizers of the energy functional in Eq. (21) lies in constructing admissible perturbations of �. Since t ∈ S 2 ,

its variations belong to the tangent space 

T t S 
2 = { δt ∈ R 

3 : δt · t = 0 } . (41) 

Despite the linear nature of the orthogonality constraint, constructing T t S 
2 following Eq. (41) is problematic in practice

because the constraint is configuration-dependent. It is in fact usually necessary to explicitly parameterize S 2 to define

admissible director variations. This, however, begets numerical issues concerning singularities in 2-parameter charts (e.g., 

Euler angles) and pointwise constraints in 3-parameter charts. 

To aid in constructing director variations in a singularity-free manner, following ( Simo and Fox, 1989 ), introduce the

unique drill-free rotation 
 ∈ SO(3) that maps E 3 to t : 


 = (t · E 3 ) I + 

̂ (E 3 × t ) + 

(E × t ) � (E × t ) 

1 + t · E 3 

. (42) 

Eq. (42) establishes an injective correspondence between S 2 and a subset of SO(3) consisting of rotations whose axis is

orthogonal to E 3 . This identification is convenient because it facilitates an alternate construction for the tangent space in

Eq. (41) as 

T t S 
2 = { 
δT : δT ∈ R 

3 , δT · E 3 = 0 } . (43) 

That δt = 
δT is an admissible variation follows easily from t · 
δT = 
 E 3 · 
δT = E 3 · δT = 0 . In effect, introducing 


transforms the configuration-dependent constraint δt · t = 0 into a simple coordinate restriction δT · E 3 = 0 . Given (δϕ, δT ) ∈
R 

3 × R 

3 such that δT · E 3 = 0 , we can now construct a 1-parameter family of perturbations �ε = (ϕ ε , t ε ) of � as 

ϕ ε = ϕ + εδϕ and t ε = exp t ( εδt ) = cos ‖ εδt ‖ t + 

sin ‖ εδt ‖ 

‖ εδt ‖ 

εδt , (44) 

where δt = 
δT and exp t : T t S 
2 → S 2 is the exponential map of the unit sphere. Corresponding variations δε , δγ and δκ

of the strain measures are straightforward to compute using their definitions in Eq. (19) . Then, for an admissible variation

δ� = (δϕ, δt ) , the first variation of the energy functional follows from Eq. (21) as 

G (�, (δϕ, δt )) � lim 

ε→ 0 

d 

dε
�CS [�ε] = 

∫ 
�0 

(
n 

αβδε αβ + q αδγα + m 

αβδκαβ

)
J d�0 . (45) 

As was the case in Section B.2 , for the purpose of finite element calculations, it is convenient to identify an equilibrium

configuration � satisfying G (�, δ�) = 0 for every δ� admissible, in an incremental manner rather than by parameterizing

the configuration manifold R 

3 × S 2 . To this end, we linearize Eq. (45) about � by an admissible increment 
� = (
ϕ, 
t =


T ) satisfying 
T · E 3 = 0 to get 

L G (�, (δϕ, δt )) = G (�, (δϕ, δt )) + DG (�, (δϕ, δt ) · (
ϕ, 
t )) , (46) 

where the directional derivative is computed using Eq. (45) as 

DG (�, (δϕ, δt )) · (
ϕ, 
t ) = 

∫ 
�0 

(



(
J n 

αβ
)
δε αβ + 
( J q α) δγα + 

(
J
m 

αβ
)
δκαβ

)
d�0 

+ 

∫ 
�0 

(
n 

αβ
δε αβ + q α
δγα + m 

αβ
δκαβ

)
J d�0 . (47) 

Computing the variations/increments of stress resultants and strains appearing in Eq. (47) is straightforward in principle, see

(Simo et al., 1990, Section 5) . Once 
� is determined, we update the configuration as 

ϕ ← ϕ + 
ϕ and t ← exp t (

T ) . (48) 

The linearized weak form in Eq. (46) and the update procedure in Eq. (48) are the basis of our algorithm to approxi-

mate an equilibrium solution � satisfying G (�, δ�) = 0 . The finite element discretization of Eq. (46) consists in restricting

test functions δ� = (δϕ, δt = 
δT ) and configuration increments 
� = (
ϕ, 
t = 

T ) to finite dimensional spaces. We

adopt finite element function spaces spanned by piecewise cubic polynomials defined over a triangular discretization of �0 

for both test functions and increments, while restricting the components δT · E 3 and 
T · E 3 to be zero so that the corre-

sponding variation δt and increment 
t are admissible. Choosing high order shape functions helps circumvent issues related

to numerical locking. At a given configuration �, restricting δ� and 
� to the finite element space transforms Eq. (46) into

a system of linear equations for the increment 
�. The first integral in Eq. (47) constitutes to the “material” part of the

stiffness matrix, while the second term is commonly referred to as the “geometric” part. This terminology is motivated by

the fact that the geometric part stems from the nonlinear strain-displacement relationship in Eq. (19) . In particular, the

geometric part vanishes in plate models employing a linear strain-displacement relationship. 
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Fig. 28. Contributions from membrane, transverse shear and bending components to the total energy in simulations of the pinched semi annulus experi- 

ment using the Cosserat plate model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a given set of Dirichlet boundary conditions and an initial guess �0 = (ϕ 

0 , t 0 ) for the equilibrium configuration, we

follow an iterative solution procedure consisting in (i) assembling the residual G ( �0 , δ�) and the stiffness matrix defined by

DG ( �0 , δ�) · 
�, (ii) resolving the linear system in Eq. (46) to compute the increments 
ϕ0 and 
T 0 , and (iii) increment-

ing the configuration to the next iterate �1 = (ϕ 0 + 
ϕ 

0 , exp t 0 (

0 
T 0 )) . We repeat this procedure until configurational

increments are deemed to be sufficiently small. 

The connections between the Cosserat rod and plate models, which was only briefly alluded to in Section 5.1 , are also

evident in the algorithms for computing their finite element approximations. The configuration spaces in both models are

nonlinear manifolds, namely R 

3 × SO (3) in the rod model and R 

3 × S 2 in the plate model. Conventional approaches either

parameterize the configuration manifold explicitly, or incorporate pointwise constraints while choosing a convenient but

improper system of coordinates. Our approach is based on the insightful observation in Simo (1985) ; Simo et al. (1990) that

configurational increments belonging to the tangent bundle of the configuration manifold are amenable to straightforward

finite element approximation. The computed increments in the tangent spaces are then mapped back to the configuration

manifold using explicit and singularity-free definitions of the exponential maps for SO(3) and S 2 in the rod and plate models,

respectively. 

B4. Simulation of bending dominated deformations 

Due to the small thicknesses of our ribbon samples, we expect the deformations observed in our experiments to be

bending-dominated. Nevertheless, the rod and plate models discussed above permit extensibility and transverse shear. Be-

sides being more general purpose, these models are more convenient to simulate than ones that explicitly incorporate inex-

tensibility/unshearability constraints. 

In the context of bending dominated deformations, membrane and shear modulii in the models discussed above serve

as penalty parameters that weakly impose inextensibility and unshearability constraints. To illustrate this point, Fig. 28

shows contributions from membrane, shear and bending deformations to the total energy in a simulation of the pinched

semi annulus experiment using the Cosserat plate model. These contributions are labelled as �CS 
m 

, �CS 
s and �CS 

b 
in Eq. (21) .

The plot confirms that �CS 
b 

is at least an order of magnitude larger than �CS 
m 

and �CS 
s . In this sense, the model indeed

predicts that the mid surface remains approximately isometric to the undeformed state, as well as approximate satisfaction

of the Kirchhoff condition. A similar observation holds for simulations using the Cosserat rod model, which implies that our

conclusions concerning it in Table 1 extend to the Kirchhoff rod model as well. 
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