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Möbius strips are prototypical examples of ribbon-
like structures. Inspecting their shapes and features
provides useful insights into the rich mechanics
of elastic ribbons. Despite their ubiquity and
ease of construction, quantitative experimental
measurements of the three-dimensional shapes of
Möbius strips are surprisingly non-existent in the
literature. We propose two novel stereo vision-based
techniques to this end—a marker-based technique
that determines a Lagrangian description for the
construction of a Möbius strip, and a structured light
illumination technique that furnishes an Eulerian
description of its shape. Our measurements enable
a critical evaluation of the predictive capabilities
of mechanical theories proposed to model Möbius
strips. We experimentally validate, seemingly for
the first time, the developable strip and the Cosserat
plate theories for predicting shapes of Möbius strips.
Equally significantly, we confirm unambiguous
deficiencies in modelling Möbius strips as Kirchhoff
rods with slender cross-sections. The experimental
techniques proposed and the Cosserat plate model
promise to be useful tools for investigating a general
class of problems in ribbon mechanics.

1. Introduction
At over 150 years old, the Möbius strip continues
to amaze and inspire [1]. Its profundity is matched
only by the simplicity of its construction. To make a
Möbius strip, join the ends of a rectangular strip after
twisting one of the ends by half a turn. Quite literally,
the twist adds magic [2]. It endows the strip with its

2021 The Author(s) Published by the Royal Society. All rights reserved.
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characteristic shape and its distinctive one-sided nature. In many ways, the Möbius strip serves
as a playground to explore the influence of geometry and topology. Such investigations are no
longer limited to abstract mathematics but extend to many science and engineering disciplines.
The one-sided nature of the strip has been gainfully exploited in several engineering applications
at various length scales, from designing propellers and conveyor belts [3] to fabricating graphene
nanoribbons [4], studying DNA structures and biomembranes [5], in synthesizing complex
molecules and crystal structures [6], in exploring novel properties of carbon nanostructures [7],
probing the mechanics of crumpling paper [8] and even designing new materials [9].

Our study of Möbius strips in this article is motivated by a broader goal of addressing
challenges in experimental techniques and modelling approaches in the emerging field of ribbon
mechanics [10]. Ribbons are slender elastic structures endowed with three distinct length scales.
In the context of a Möbius strip, these dimensions are the length �, the width w, and the thickness
t, which are ordered such that � � w � t. Recurring themes in the mechanics of ribbon-like
structures, such as the contrast between moduli for bending about the principal axes of the
cross-section, (near) inextensibility of the mid surface, localization of deformation in the form
of creases/vertices, and the interplay between twisting and bending modes of deformation, are
all observed in Möbius strips as well [11,12].

Our primary contribution in this article is a novel application of stereo vision techniques to
experimentally measure shapes and displacement fields for free-standing Möbius strips. Our
measurements, which appear to the be the first of their kind in the literature, represent more
than a routine exercise. For a model that serves as a prototypical example in all the STEM fields,
experimental studies to quantitatively determine its three-dimensional shape/deformation have
remained elusive. To this end, we propose a structured light imaging technique to accurately
digitize the shape of a Möbius strip and a marker-based technique to sample the displacement
field accompanying its construction. These measurements furnish Eulerian and Lagrangian
descriptions for the strip, respectively. Both classes of measurements can be reproduced using
a pair of digital cameras, a digital light projector and some proficiency in using open-source
computer vision libraries [13]. We expect both techniques to find wider application in digitizing
and visualizing deformations of slender elastic structures.

Our experimental measurements also provide an opportune setting to examine the
(in)accuracies of mechanical models for predicting shapes and deformations of Möbius strips.
Owing to their physical appearance, Möbius strips may be considered either as rods with highly
anisotropic cross-sections or as narrow plates. This dichotomy parallels the development of rod-
and plate-based models to determine equilibrium shapes of free-standing strips. Among the
earliest works on the topic considers minimizing the bending energy of a Kirchhoff plate [14,15].
On the other hand, the strip has also been modelled as a Kirchhoff rod [16] based on the intuitive
idea that a rectangular strip can be considered a rod with a slender cross-section. It is generally
well recognized that rod and plate models presume drastically different kinematics, and that the
latter are better suited for describing deformations of ribbon structures having w � t [12,17]. Our
investigation here conclusively adds the canonical case of a Möbius strip to the growing list of
examples that help distinguish models for slender rods from those for narrow plates.

Specifically, we compare predictions for shapes of Möbius strips modelled as Kirchhoff rods,
as developable strips and as Cosserat plates, with experimental measurements. The former pair of
one-dimensional theories have been previously investigated in the literature [16,18,19]. However,
predictions of neither model appear to have been scrutinized with experimental measurements.
Our investigation unambiguously confirms inaccuracies in the number of frame-switching points
predicted by the rod theory [18,20] as well as in the dependence of the predicted solution on the
width (equivalently the aspect ratio �/w). On the other hand, the measurements fully validate the
developable strip model for modelling Möbius strips. As predicted by the simulations in [18], the
measurements also confirm the existence of nearly flat triangular facets bounded by sharp creases
and localized concentrations (divergences) of the energy density in the strip [11].

Computing predictions of the developable strip model for general ribbon structures, however,
remains a challenge [19,21,22]. A fundamental difficulty stems from the choice of parametrization
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for the solution surface—the Frenet frame used in the parametrization is ill defined at points
where the curvature of the centreline vanishes. The existence and distribution of such points are
not known a priori and may even change with the applied loading. An added source of difficulty
stems from the model’s dependence on curvatures and torsions, i.e. on high-order derivatives
of the centreline coordinates. Evidently, simulation techniques for ribbon structures based on
well-known structural mechanics models using numerical algorithms whose implementations
are readily available in simulation codes will be invaluable. This consideration motivates us
to examine the more general Cosserat plate theory for modelling Möbius strips. We find that
its predictions agree well with the developable strip model, as well as with experimental
measurements. Furthermore, the simulations confirm that the theory seamlessly accommodates
near inextensibility of the mid surface in bending-dominated deformations. These observations
complement the recent findings on the theory’s efficacy for modelling annulus-shaped ribbons
reported in [12].

The remainder of the article is organized as follows. We provide a concise description of
triangulation using a stereo vision arrangement in §2. We propose a marker-based technique to
sample displacement fields in constructing Möbius strips in §3 and a structured light imaging
technique to measure Möbius strip shapes in §4. We record a few observations based on our
measurements of Möbius strips using these techniques in §5. We devote §6 to contrasting
experimental measurements with predictions of mechanical models and conclude with a few
remarks in §7.

2. Stereo vision in a nutshell
How can we measure the shape of a Möbius strip? Contact-based measurements using probes,
for example, are unsuitable because of the compliance of the structure. We resort to optical
techniques instead. In principle, photographs of a physical model can be analysed or compared
with theoretical predictions [16,23]. Setting aside the challenges in such an exercise (e.g. due to
occlusions caused by the strip’s shape), the idea is not entirely satisfactory because it only yields
projections of the strip on specific planes rather than the actual three-dimensional shape. Instead,
we explore the possibility of digitizing the shape of a strip using stereo vision techniques. Hence,
we will photograph a Möbius strip from multiple vantage points using a pair of digital cameras
and reconstruct its three-dimensional surface using computer vision algorithms. In the interest of
keeping our discussions self-contained, we provide a brief description of triangulation in stereo
vision in this section.

To fix ideas, we consider the problem of determining the spatial location of a point P given
its images as digital photographs. To this end, we describe a simple geometric model for image
formation before proceeding to discuss the idea of triangulating the location of P. The ensuing
discussions are not intended to review the rich literature on this topic. We refer to [24,25] for
details and insights on the general problem of machine vision. Our primary goal here is to
facilitate accurate descriptions of the measurement techniques discussed in §§3 and 4.

(a) Image formation
We model a well-focused imaging system as an idealized pinhole camera. Let P have coordinates
X = (X, Y, Z) in a world coordinate system. Let its image be registered at the pixel x = (x, y) on a
digital camera’s sensor. The pinhole camera model relates the two as

λ
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or more succinctly, as λx = SKf Π0MX, where x and X denote the homogeneous representations of
x and X, respectively. Equation (2.1) can be interpreted as a sequence of transformations. First, the
rigid body transformation M, consisting of a rotation R and translation T, changes coordinates
from the world system to a camera system with its origin at the optical centre and whose z-axis
coincides with the optical axis. Next, the canonical perspective projection Π0 registers P’s image
on the sensor of a pinhole camera with unit focal length. The product Π = Kf Π0 corrects the
focal length to f . The point Kf Π0MX hence represents the homogeneous coordinates of P’s
image on the sensor in the camera’s coordinate system. The final transformation S maps these
to pixel coordinates using suitable scale factors (sx, sy) and a translation (Ox, Oy). The product
K = SKf , called the camera matrix, encapsulates all parameters intrinsic to the camera. The set of
extrinsic parameters that determine the camera’s pose relative to the world coordinate systems
is represented by the matrix M. Both K and M are identifiable using routine camera calibration
procedures [13].

The scale factor λ appearing in equation (2.1) precisely reveals the information lost during
image formation, namely, the depth of P along the optical axis. Notice that with y = K−1x and
Y = RX + T, we have

λx = SKf Π0MX ⇒ λy = Π0Y ⇒ λy = Y. (2.2)

In registering the image of Y at y, equation (2.2) effectively reduces the imaging system to a
canonical pinhole camera with unit focal length. Equation (2.2) also shows that loss of depth
during image formation is entirely attributable to the perspective projection Π0 : R

4 → R
3. For

this reason, a photograph does not help distinguish a Möbius strip from another that is twice as
large and is placed twice as far away from the camera.

In summary, equation (2.2) shows that since the depth λ is unknown, it is impossible
to determine Y (equivalently X) using only the pixel coordinates y (equivalently x), i.e. the
relationship Y �→ y is not invertible. To locate P, it is necessary to image it from at least one more
vantage point, which leads us to the idea of triangulation.

(b) Triangulation
As depicted in figure 1, we now assume that P is imaged using a pair of cameras and denote the
corresponding realizations of equation (2.2) by λ1y1 = Y1 and λ2y2 = Y2, respectively, with the
subscripts 1 and 2 referring to the camera labels. The depths λ1 and λ2 are both unknown. The
possibility of determining them emerges from the observation that the pixel locations y1,2 both
represent images of the same point P. Since Y1 and Y2 represent coordinate transformations of
X to the intrinsic systems of each camera, it follows that Y2 = RY1 + T, where the rotation R and
translation T constitute the rigid body motion M−1

2 M1. Then, we have

λ2y2 = λ1Ry1 + T ⇒ λ1
(
y2 × Ry1

) = −y2 × T ⇒ λ1 = ‖y2 × T‖
‖y2 × Ry1‖

, (2.3)

from where the desired location X of P follows as X = λ1M−1
1 y1. Notice that equation (2.3)

represents an overdetermined system of equations for the pair of depths λ1 and λ2. In fact, the
constraint λ2y2 = λ1Ry1 + T on the pixel locations y1 and y2 has a useful geometric interpretation:

λ2y2 = λ1Ry1 + T ⇒ λ2(T × y2) = λ1(T × Ry1) ⇒ y2 · (T × Ry1) = 0 ⇒ Y2 · (T × RY1) = 0,

thus revealing the coplanarity condition illustrated in figure 1. We may therefore interpret the
depth calculation in equation (2.3) as a problem of determining the intersection of a pair of rays
emanating from the two cameras’ optical centres and passing through the image points y1 and
y2. Such an interpretation justifies the nomenclature of triangulating the location of P.

Implicit in the triangulation of P in equation (2.3) is the assumption that it is possible to
identify a pixel y1 (equivalently x1) in the image from the first camera, and a corresponding pixel
y2 (equivalently x2) in the image from the second, as pixels that represent the same point P. Let
us denote the correspondence between y1 and y2 by y1 ≡ y2. In practice, this correspondence
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Figure 1. An illustration explaining the triangulation of a point P using a stereo vision arrangement. The optical centres O1,2,
the image pixels x1,2 and the point of interest P are guaranteed to be coplanar, i.e. to lie on the epipolar plane shown in grey. The
three-dimensional location of P is determined as the point of intersection of the rays O1x1 and O2x2. (Online version in colour.)

problem can be resolved in many ways—by identifying special geometric features in the
scene (e.g. corners or edges), matching colours or statistically correlating textures as done in
digital image correlation techniques [26]. The techniques described in §§3 and 4 devise special
strategies to address the correspondence problem with the specific goal of sampling shapes and
displacement fields of Möbius strips.

3. Sampling deformation mappings with fiduciary markers
To sample the deformation mapping for the construction of a Möbius strip, we label its surface
with special markers. These markers, which are either pasted or printed on the strip, serve dual
purposes. First, tracking marker locations facilitates a Lagrangian description of the construction
of the strip. Second, markers help establish pixel correspondences required for triangulation, as
discussed above.

(a) ArUco markers
From a variety of strategies for designing markers [27,28], we adopt the fiducial ArUco marker
system [29]. As depicted in figure 2, markers in this system are square-shaped matrices with
binary-encoded bits. Each marker is an n × n matrix of ones (white) and zeros (black), thus
yielding a system with 2n×n markers. However, it is necessary to account for the realistic
possibility of errors in bit classification in experimental images, resulting from noise, ambient
lighting, shadows and occlusions. This, in turn, is critical for ensuring fault-tolerant marker
identification. For this reason, the marker generation system in [29] creates smaller dictionaries
by identifying markers that are well spaced in a certain metric. We adopt a 1000-word dictionary
of 4 × 4-bit markers in our experiments.

Figure 2 depicts a stereo arrangement for imaging a Möbius strip. The strip is labelled using
ArUco markers, no two of which are identical. Detecting a marker in a camera image yields the
pixel coordinates of its four corners. If a marker is detected in both cameras’ images, then its
location on the strip is reconstructed using equation (2.3). More specifically, let M1 and M2 denote
the sets of markers detected in the images of cameras 1 and 2, respectively. For m ∈M1 ∩ M2, let
{pm,1

i }4
i=1 and {pm,2

i }4
i=1 denote the pixel coordinates of the four corners of marker m in the two

camera images. Evidently, pm,1
i ≡ pm,2

i for each m ∈M1 ∩ M2 and i = 1, . . . , 4. Thus, triangulating

corresponding corner pairs pm,1
i and pm,2

i for each i = 1, . . . , 4 using equation (2.3) yields the spatial
locations of each corner of m. Figure 3a shows images from a representative experiment performed
using the set-up in figure 2. To aid in visualization, each marker is assigned a unique colour.
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anatomy of an
ArUco marker surface markers

4 × 4 bit matrix
encoding

ArUco marker

camera #1
camera #2

rear side

Dll

Möbius strip
labelled with markers

front side

glue

w

glue

rectangular strip labelled with ArUco markers

buffer pixels

Figure 2. Experimental set-up to sample the deformation mapping of a Möbius strip. Both sides of a rectangular polymeric
strip are painted with a non-repeating set of ArUco markers. These markers serve to track material points on the strip and to
deduce pixel correspondences. Eachmarker represents a 4 × 4-bit codewordwhich can be robustly detected in camera images.
(Online version in colour.)

Hence, markers with identical colours appearing in both camera images belong to the set M1 ∩
M2, and their corner pixel locations in the two images correspond. The figure also shows the
reconstructed set of markers in M1 ∩ M2. Denoting the locations of the corners of marker m in the
reference configuration by {Qm

i }i and their triangulated locations in the deformed configuration
by {Pm

i }i, we conclude that marker m ∈M1 ∩ M2 samples the deformation mapping ϕ and the
displacement field u as

ϕ(Qm
i ) = Pm

i and u(Qm
i ) = Pm

i − Qm
i . (3.1)

(b) Incremental reconstruction
A few practical difficulties arise in realizing the procedure described by equation (3.1). Owing to
a Möbius strip’s three-dimensional shape, only a small subset of markers on the strip’s surface
fall within the cameras’ fields of view. The detection algorithm may also fail to identify some
among them, due to the limited depth of focus, for instance, and especially with markers labelling
regions where the strip has large curvatures. In fact, due to the curvilinear shape of the strip,
markers are required to be sufficiently small in size for them to be robustly identified by the
detection algorithm. Using small markers, in turn, has a cascading set of implications—it requires
narrowing the cameras’ fields of view, precludes the possibility of using markers with high levels
of detail (i.e. a larger number of encoding bits n), and increases the number of markers required
to label the strip.

In summary, M1 ∩ M2 generally contains only a small fraction of the set of markers used to
label the strip. Consequently, it is only possible to sample the deformation/displacement field
over a small subset of the strip with a given camera arrangement. For instance, only 75 of the
total 321 markers are reconstructed in the stereo arrangement used in figure 3a. Therefore, it
is necessary to reconstruct marker locations following equations (2.3) and (3.1) incrementally,
by altering the relative positioning of the cameras and the strip. In our experiments, it is more
convenient to place the strip on a rotary stage than to reposition the cameras. As shown in
figure 3b, we rotate the stage in 60◦ increments and compute partial samplings of the deformation
mapping at each instance. Finally, we merge all measurement instances to a common coordinate
system using a registration procedure. Thus, given the triangulated marker corner locations
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partial reconstruction
(75 markers)

284

world coord. sys.

1 21 4

32

323 2 1
371

turn

table

1 2

cam #1

ca
m

er
a 

#1

cam #2

incremental reconstruction

75
markers

101

front side (reconstructed 78 of 156 markers)

rear side (reconstructed 125 of 165 markers)

occluded markers

reference configuration

marker on front side marker on rear side

complete 3D reconstruction
(deformation mapping
sampled at 812 points)

m
er

ge

103 80 41 40

j

(a)

(b)

(c)

Figure 3. Images (a) and (b) show partial and incremental reconstructions of surface markers using the set-up in figure 2.
The complete reconstruction in (c) yields the desired sampling of the deformation mapping defining the construction of the
strip. (a) The images on the left highlight ArUco markers on the Möbius strip detected in the two cameras’ photographs. Each
marker is assigned a unique colour to help visualize the setM1 ∩ M2 detected in both cameras’ images. Respective corners of
each of thesemarkers in the two camera images correspond. The result of reconstructing these corner locations is shown on the
right. (b)Markers on aMöbius strip are incrementally reconstructed in six steps by rotating the turn table onwhich the sample is
placed. Note that only images fromcamera 1 are shownhere. (c) Cumulative result of registering partial reconstructions from (b).
(Online version in colour.)

{Pm,α
i }i,m, m ∈Mα and {Pm,β}i,m ∈Mβ from a pair of measurement instances labelled α and

β, we compute a rigid body transformation (Rαβ , Tαβ ) that maps {Pm,β
i }i,m to the coordinate

system of the instance α. The coordinate transformation is computed by resolving a least-squares
minimization problem that registers corners of the common set of markers, namely,

Find (Rαβ , Tαβ ) ∈ SO(3) × R
3 s.t.

∑
m∈Mα∩Mβ

4∑
i=1

‖(RαβPm,β
i + Tαβ ) − Pm,α

i ‖2 → min . (3.2)

Registering measurement instances in a pairwise manner then yields a sampling of the
deformation mapping spanning the entire surface of the Möbius strip as shown in figure 3c.

Equation (3.2) highlights a third purpose served by the surface markers, namely, pose
registration. This is in fact the primary use case for fiduciary markers in augmented reality
and robotics applications. Here, we exploit them for a radically different purpose—sampling
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deformation mappings of flexible surfaces. The efficacy of such an application relies on the surface
remaining (nearly) inextensible so that markers suffer negligible distortions during loading.

4. Sampling three-dimensional shapes using structured light imaging
Owing to the narrow widths of strips, triangulating marker locations, as discussed in §3, only
yields a sparse sampling of the shape of a Möbius strip. For instance, the strip appearing in
figures 2 and 3 has dimensions � = 30 cm and w = 1.9 cm, and the markers used to label the
surface have a size of 4 mm × 4 mm. The reconstructed set of 203 markers shown in figure 3c
yields 812 points sampling the surface, which suffices for analysing coarse geometric features of
the surface but does not help examine detailed curvature distributions, for instance. With this
rationale, we discuss a structured light imaging technique next that illuminates the strip using
distinctive patterns to establish pixel correspondences. The technique yields a dense sampling of
the surface, i.e. an Eulerian description for the shape of the strip.

(a) Structured light illumination
The structured light imaging technique we introduce uses binary encoded illumination patterns
[30]. As depicted in figure 4, a digital light projector sequentially illuminates a Möbius strip
with a hierarchically refined set of patterns, each of which is composed of alternating black and
white stripes oriented along the axes of a Cartesian coordinate system. As we explain next, these
illumination patterns, which are a defining feature of the technique, serve to encode pixels in
cameras imaging the scene. These encodings help establish correspondences between pairs of
pixels of cameras in a stereo arrangement, so that corresponding pixel pairs can be triangulated
using equation (2.3).

To proceed, it is necessary to introduce some notation. Let images {Ui}n
i=1 denote the sequence

of illumination patterns consisting of alternating black and white stripes oriented along the
horizontal direction. With the Möbius strip illuminated using pattern Ui, let I1

i and I2
i denote the

images recorded by the first and second camera, respectively. Similarly, denote the illumination
patterns consisting of vertically oriented stripes by {Vi}n

i=1 and the corresponding camera images
by J1

i and J2
i . Without loss of generality, we assume the illumination patterns to be indexed in

increasing order of stripe refinement. We also assume camera images to be monochromatic, with
intensity values set to 1 at white pixels and 0 at black ones. In the following discussions, we refer
to the intensity at pixel (p, q) in an image I by I(p, q).

(b) Encoded correspondences
The sets of camera images {I1

i }i ∪ {J1
i }i and {I2

i }i ∪ {J2
i }i all record the same scene with the Möbius

strip remaining unperturbed, but under different illuminations. The projected illuminations serve
to partition the strip spatially, with each partition encoded by the locally incident sequence of
illuminations. In turn, pixel sets of the cameras imaging these regions are partitioned into encoded
subsets.

More specifically, define an n-bit codeword (uα , vα) for the pixel (p, q) in camera α for α ∈ {1, 2},
as

uα(p, q) = (Iα1 (p, q), Iα2 (p, q), . . . , Iαn (p, q)) and vα(p, q) = ( Jα1 (p, q), Jα2 (p, q), . . . , Jαn (p, q)). (4.1)

Hence, the codeword (uα(p, q), vα(p, q)) lists the sequence of illuminations recorded at the pixel
(p, q) in camera α, with coarser patterns contributing to more significant bits. Equation (4.1)
defines an equivalence relation ∼ between pixels. Given pixels (p, q) and (p′, q′) in camera α, we
say

(p, q) ∼ (p′, q′) if and only if (uα(p, q), vα(p, q)) = (uα(p′, q′), vα(p′, q′)). (4.2)

We refer to the equivalence class of pixels determined by the relation ∼ as pixel blocks and denote
the pixel block of camera α with codeword (u, v) by Bα(u, v). Figure 5a illustrates such a partitioning
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Figure 4. The set-up for sampling the shape of a Möbius strip using structured light illumination patterns consists of a pair of
cameras in stereo arrangement and a digital light projector. The latter illuminates the strip with a sequence of binary-encoded
light patterns to establish correspondences between pixels of the two cameras. (Online version in colour.)

of pixels of camera 1 into blocks. By recording the same sequence of illuminations, it follows that
a pair of pixel blocks B1 in camera 1 and B2 in camera 2 correspond if and only if they share the
same codeword. In this way, we arrive at a notion of ‘block-wise’ correspondence between pixels
in the two cameras:

B1(u, v) ≡ B2(u′, v′) if and only if (u, v) = (u′, v′). (4.3)

Figure 5b highlights such correspondences by depicting pairs of identically encoded blocks in the
same colour.

For triangulation using equation (2.3), equation (4.3) does not suffice because each block
generally contains many pixels. The specific numbers depend on the resolutions of the cameras
and the projector, the number of illumination patterns used, on geometric features of the strip,
and the placement of the cameras. While it is possible to deduce more refined correspondences
starting from equation (4.3), we adopt a simpler alternative here by resorting to the ansatz that
the averages of pixels in corresponding blocks themselves correspond, i.e. that

〈B1(u, v)〉 ≡ 〈B2(u, v)〉 for each (u, v) s.t. B1,2(u, v) �= ∅, where 〈B〉 � 1
#B

∑
(p,q)∈B

(p, q). (4.4)

Note that equation (4.4) is only an approximate notion of correspondence since B1(u, v) ≡ B2(u, v)
does not imply 〈B1(u, v)〉 ≡ 〈B2(u, v)〉. However, its accuracy improves with increasing n and with
higher projector resolution. Unlike equation (4.3), equation (4.4) is directly suited for triangulation
using equation (2.3), which yields a three-dimensional reconstruction of the strip as a dense
cloud of points. Figure 5b shows the sampling of a Möbius strip computed by projecting n = 8
illumination patterns.

As was the case in reconstructing marker locations in §3, it is only possible to sample a subset
of a Möbius strip for a given placement of the sample relative to the imaging set-up. In particular,
only the subset of the strip falling within the fields of view of the two cameras and the projector is
reconstructed. Hence, as illustrated in figure 5c, it is necessary to incrementally reconstruct subsets
of the strip from multiple vantage points and register them to a common coordinate system. It is
worth contrasting the density of the point cloud sampling reconstructed in figure 5c with the
sparse sampling possible with the marker-based technique (figure 4).

5. Some observations
We record a few remarks concerning the techniques discussed in §§3 and 4 and a few observations
from measurements of shapes of Möbius strips using them.

(i) Accuracy. Figure 6 examines the accuracies of shape measurements using a polypropylene
strip having dimensions � = 30 cm and w = 1.9 cm, by comparing the measurements from
figures 3 and 5 with a dense sampling of its surface measured using a laser-based scanner
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Figure 5. Sampling the shape of a Möbius strip using a structured light illumination technique. (a) Sequentially illuminating
a strip with structured light patterns spatially partitions camera pixels into encoded blocks. For visualization, such pixel
blocks are shown in distinct colours. (b) Pixel blocks with identical encodings in both camera images are deemed to
correspond. Triangulating corresponding blocks using equation (4.4) yields a point cloud sampling of the strip. (c) Incrementally
reconstructing a strip from five vantage points. (Online version in colour.)

(Hexagon Romer Arm 7320) that has an accuracy of 80 µm. To quantify the agreement
between the measurements shown in the figure, we use the nearest-neighbour metric

d(q,P) � min
p∈P

‖p − q‖ (5.1)

that measures the distance of a point q to the point cloud P , where ‖ · ‖ is the Euclidean
norm in R

3. We denote the benchmark dataset from the laser scan by Pls, and the
measurements determined using ArUco markers and structured light illumination by
Par and Psl, respectively. We find the mean and standard deviation of the distances
{d(p,Pls)}p∈Par to be 44 µm, 27 µm, and of {d(p,Pls)}p∈Psl to be 59 µm, 38 µm. Figure 6
also shows histograms of these distances. These values/plots lead us to conservatively
conclude that the measurement errors in the two techniques remain smaller than about
200 µm.

However, it is important to note that the accuracies noted depend on a host of factors.
Besides the camera modelling approximations discussed in §2, errors from camera
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Figure 6. A comparison of the measurements from §§3 and 4 with a benchmark laser scan. (Online version in colour.)

calibration and from registration of partial reconstructions are inevitable. Template
matching and corner detection methods underlying ArUco markers’ identification, and
the ansatz for correspondence assumed in equation (4.4) introduce additional algorithmic
sources of error. Besides these, parameters related to the stereo arrangement, such as the
baseline distance between the cameras, also influence the measurement accuracy [24,25].

(ii) Material. We examine the influence of the material on the shape of a strip in figure 7a.
The figure compares dense point cloud measurements of shapes of Möbius bands made
from 30 cm × 1.9 cm strips cut from a polypropylene sheet (used in figures 3, 5, 6), a
radiography film (polyethylene terephthalate base material), and an overhead projector
sheet (OHP, polyethylene terephthalate) having nearly identical thicknesses equal to
0.18 mm. We assume the material constitution of each sheet to be nominally isotropic.
The figure shows that these datasets, labelled Ppp,Pxray and Pohp, respectively, appear to
overlap. To quantify the comparison, we compute the mean μ(Pxray,Ppp) and standard
deviation σ (Pxray,Ppp) of the distances {d(p,Ppp)}p∈Pxray . We find these to be 67 and
54 µm, respectively. Similarly, we find μ(Pohp,Ppp) = 36 µm and σ (Pohp,Ppp) = 15 µm.
These values are comparable to the inter-point spacing (≈ 44 µm) in Ppp as well as
to the accuracies of the measurements noted above, suggesting that the shape of a
strip is essentially independent of the material composition. Moreover, we verify that
construction of these Möbius strips is fully reversible manner over many trials, thus
confirming that the strain in the material does not cause any permanent damage.

(iii) Width. Figure 7b compares the measured shapes of Möbius strips cut from radiography
films having length � = 30 cm and widths ranging from 1.9 cm to 9.5 cm. The largest width
of 9.5 cm is smaller than �/

√
3, which is conjectured to be the limiting value to ensure

developability [31]. We find that the shapes show small but noticeable differences. In
particular, the shape of a strip with a smaller width is not simply a subset of a strip with a
larger width. We revisit this observation later in §6 when examining the influence of the
width on shapes predicted by different mechanical models.

(iv) Self-weight. The measurements shown thus far use Möbius strips resting on a turntable
(see figures 2 and 4). Strictly speaking, therefore, these strips are not free-standing since
the weight of the strip is balanced by contact forces. Figure 7c examines the influence of
gravity on the shape of a strip (polypropylene, 30 cm × 1.9 cm × 0.18 mm) by measuring
its shape when it is rested on a turntable (PH), and when it is suspended from a support
(PV), as shown in the figure. The locations and relative orientations of gravitational and
contact forces acting on the strip are different in the two configurations. Nevertheless,
the two measurements agree well with each other—we find μ(PH,PV) = 58 µm and
σ (PH,PV) = 30 µm, which are comparable to the measurement accuracy. This observation
leads us to infer that Möbius strips made of polymeric materials used in our experiments,
all having similar densities and elastic moduli, are sufficiently stiff to resist deformations
caused by self-weight. It is important to note, however, that this stiffness is largely
geometrically induced and is much smaller in narrower strips. We find that strips with
w/� smaller than about 0.035 show notable deformations under self-weight. For this
reason, we do not use narrow strips when contrasting experimental measurements with
predictions of mechanical models computed without including gravity effects in §6.
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Figure 7. The close agreement between measured shapes of Möbius strips cut from sheets made of three polymeric materials
shown in (a) suggests that the influence of the material is negligible, provided that strains remain small and the material
constitution is isotropic. The image in (b) compares the shapes of strips having identical length but different widths. Small
differences in the shapes are evident. The images in (c) confirm the negligible influence of self-weight on the shape of aMöbius
strip by contrasting measurements with two different types of supports. All strips shown have length � = 30 cm; the strips in
(a) and (c) have widthw = 1.9 cm. (Online version in colour.)

(v) Thickness independence. We expect surfaces of thin Möbius strips to remain developable.
To verify that our experiments fall in a bending dominated regime, we construct
Möbius bands from polypropylene sheets having dimensions � = 30 cm, w = 1.9 cm
and thicknesses equal to 100, 180 and 230 µm using the procedure shown in figure 2.
The overlap length �� is set to 10 mm in each case. We compare dense point cloud
measurements P100,P180 and P230 of their shapes with the measurement Pref of a reference
band whose construction is depicted in figure 8a. Specifically, we create the reference
band by cutting a rectangular strip with dimensions 2� × w from a polypropylene sheet
with thickness t = 180 µm and apply an adhesive over one half of its length. We bend,
twist and wind the strip to emulate the construction of a Möbius band from a strip
having dimensions � × w but thickness 2t = 360 µm. We find that the mean μ(Pt,Pref)
and standard deviation σ (Pt,Pref) for t = 100, 180 and 230 µm reported in figure 8b are
comparable to the measurement accuracies. This leads us to conclude that the four
Möbius bands with different thicknesses have nearly indistinguishable shapes, i.e. that
band shapes are independent of the thickness over the range of aspect ratios considered.

(vi) Thickness perturbations. The last observation we note concerns the influence of local
perturbations in the thickness of a strip on its shape. Such perturbations manifest in our
experiments in two ways. First, we prepare Möbius bands by gluing the ends over a
small but finite overlap region as indicated in figure 2. Consequently, the thickness of the
band is doubled over an area measuring �� × w. A second source of perturbations arises
from pasting markers on the strip, which locally increases the thickness. We examine
the (in)significance of these thickness perturbations in figure 8. With the rationale that
the reference band in figure 8a is devoid of thickness perturbations, we set Pref to be the
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Figure 8. Examining the influence of the thickness and thickness perturbations on the shape of a Möbius strip. The reference
‘double-layer’ band constructed as shown in (a) is free from thickness variations and therefore serves as the benchmark dataset.
Table (b) confirms that the thickness and theoverlap lengthhavenegligible influenceon the shape,while (c) verifies insensitivity
to different combinations of stripmaterials, the number ofmarkers pasted, andmarker arrangements. (Online version in colour.)

benchmark dataset against which we compare point cloud measurements from Möbius
strips (polypropylene, 30 cm × 1.9 cm × 0.18 mm) having overlap lengths ranging from
5 to 20 mm. The mean and standard deviations computed from these comparisons are
reported in figure 8b. These values are comparable to the measurement accuracy and are
within acceptable bounds for the case �� = 10 mm used in all our experiments. Finally,
figure 8c compares the centreline coordinates of strips (polypropylene, 30 cm × 1.9 cm ×
0.18 mm) measured in five experiments using different combinations of pasted markers,
printed markers, and marker arrangements. The plots confirm that the band’s shape
is unaffected by markers, and hence that the effects of thickness perturbations in our
samples are inconsequential.

6. Model predictions versus measurements
Measurements of shapes and deformation maps of Möbius strips enable us to critically examine
the predictive capabilities of mechanical theories proposed to model them. Since details of these
models are well documented in the literature, we restrict their discussions to just the aspect
relevant to their numerical simulation.
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(a) Mechanical models
In the following, the unstressed configuration of the strip coincides with the region B0 = S0 ×
[−h/2, h/2], where S0 = C0 × [−w/2, w/2] is the mid surface of the strip and C0 = [0, �] is the
centreline oriented along the E1 axis in the standard Cartesian basis {E1, E2, E3}. A Möbius strip is
constructed by rotating and twisting the edge X1 = � while holding the edge X1 = 0 fixed (see
figure 9). We are interested in predicting the shapes of the deformed mid surface S and the
deformed centreline C.

(i) Möbius strips as Kirchhoff rods

The configuration of a Möbius strip modelled as a Kirchhoff rod is specified by its centreline
r : [0, �] → R

3 that is endowed with an orthonormal triad of directors {t1, t2, t3} at each point (see
figure 9a). In the unstressed configuration, r(X1) = X1E1 and the director frame coincides with
the Cartesian basis The centreline remains inextensible during deformation, i.e. ‖r′‖ = 1, where
(·)′ = d(·)/dX1. Unshearability of cross-sections orthogonal to the centreline is enforced by the
constraint r′ = t1.

Introducing ω : [0, �] → R
3 such that t′i = ω × ti with ω = κ1t1 + κ2t2 + κ3t3 identifies κ1 as

the torsional strain measuring twist of the director frame about t1, and κ2 and κ3 to be the
strains for bending about the axes t2 and t3, respectively. Presuming a linear constitutive
relationship between these strain measures and their conjugate moment resultants, the strain
energy functional associated with the configuration (r, {ti}i) follows as [32, ch. 5]

Π rod[r, {ti}i] = 1
2

∫ �

X1=0

(
GJκ2

1 + EI2κ
2
2 + EI3κ

2
3

)
dX1, (6.1)

where E and G are the Young and shear moduli, I2 = wh3/12 and I3 = hw3/12 are the area
moments of inertia of the cross-section [−w/2, w/2] × [−h/2, h/2] for bending about t2 and t3,
respectively, and GJ ≈ (G/3)wh3(1 − 0.63h/w) is the torsional stiffness. Moments m along the
centreline are constitutively defined, while contact forces n are Lagrange multipliers imposing
the inextensibility and unshearability constraints. Statements of force and moment balances yield
the familiar differential equations n′ = 0 and m′ + t1 × n = 0.

To mimic the construction of a Möbius strip, the centreline and the director frame at the end
X1 = 0 are constrained by setting (r, t1, t2, t3) = (0, E1, E2, E3) at X1 = 0. Assuming flip-symmetry
of the solution about the E2 axis [16,19], the centreline is constrained to lie on the E2 axis and
the director t3 is oriented anti-parallel to E2 at X1 = �/2. Moreover, components of the contact
force and moment along the symmetry axis vanish as well. Hence, we set (r · E1, r · E3, t3, n ·
E2, m · E2) = (0, 0, −E2, 0, 0) at X1 = �/2. In summary, an equilibrium configuration (r, {ti}i) for the
Möbius strip predicted by the Kirchhoff rod model is an extremizer of the energy functional Π rod

in equation (6.1) satisfying the clamped and flip-symmetry boundary conditions at X1 = 0 and
�/2, respectively.

(ii) Möbius strips as developable surfaces

The point of departure for modelling the construction of a developable Möbius strip is the
bending energy of a Kirchhoff plate [33, ch. 24]:

Πkp[S] = B
2

∫
S
{(1 − ν)Tr[K2] + ν Tr2[K]} dS, (6.2)

which presumes a linearly elastic and isotropic material constitution, and where B =
Eh3/12(1 − ν2) is the bending modulus, ν is Poisson’s ratio and K denotes the curvature tensor
of the mid surface S. Developability of S implies det(K) = 0, which simplifies equation (6.2)
to Πkp[S] = (B/2)

∫
S Tr2[K] dS. Furthermore, the developability constraint inspires a special

parametrization for the strip as a ruled surface [23]. Consequently, the configuration (r, η) of
the mid surface is defined by its centreline X1 �→ r(X1) whose Frenet frame consisting of the
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Figure 9. Parametrizations of a Möbius strip modelled as a Kirchhoff rod (a), developable strip (b) and as a Cosserat plate (c).
(Online version in colour.)

unit tangent, binormal and normal is denoted by {t1, t2, t3}, and a field X1 �→ η(X1) ∈ R defining
inclinations of surfaces generators belonging to tangent planes spanned by t1 and t2 (see
figure 9b). Setting the generator at r(X1) as t2(X1) + η(X1) t1(X1) and denoting the coordinate along
a generator by v, the parametrization of the mid surface follows as (X1, v) �→ r(X1) + v(t2(X1) +
η(X1) t1(X1)), where t1(X1) = r′(X1). The pullbacks of the Frenet frame and the generators to
the unstressed configuration are {E1, E2, E3} and E2 + η(X1) E1, respectively, thus yielding a
parametrization for S0 as (X1, v) �→ X1E1 + v(E2 + η(X1) E1). In particular, the lateral edges of
the rectangular strip along X2 = ±w/2 coincide with the bounds v = ±w/2 along each generator.
Hence, (X1, v) ∈ [0, �] × [−w/2, w/2].

The mid surface parametrization together with the observation that t′i = ω × ti for ω = −τ t1 −
κt2, where κ and τ are the curvature and torsion of the centreline, respectively, reduce Πkp to the
one-dimensional Wunderlich functional (see [34, appendix] and [35]):

Πkp[S] = Bw
2

∫ �

X1=0

κ2(1 + η2)2

η′w
log

(
2 + η′w
2 − η′w

)
dX1 ≡ Πds[r, η]. (6.3)

In the interest of brevity, we omit stating the equilibrium equations satisfied by extremizers of
Πds, which can be found in [18]. To simulate the construction of a Möbius strip, we impose
boundary conditions analogous to the case of the rod model.

(iii) Möbius strips as Cosserat plates

The Wunderlich functional effectively models Möbius strips as Kirchhoff plates in pure bending.
The 1-director Cosserat plate model relaxes the mid surface inextensibility and transverse
unshearability constraints. The admissible configuration (ϕ, t) of a Möbius strip modelled as a
Cosserat plate is specified by its mid surface ϕ : S0 → R

3 and a director field t : S0 → S
2 having unit

norm (see figure 9c). The latter is interpreted to denote the inclinations of inextensible material
fibres oriented along the thickness in the unstressed state, where ϕ(X1, X2) = X1E1 + X2E2 and
t = E3.
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Equilibrium configurations are extremizers of the energy functional

Πcp[ϕ, t] = 1
2

∫
S0

Eh
(1 − ν2)

(
ν Tr2[ε] + (1 − ν)Tr[ε2]

)
+ Gh (γ · γ )

+ B
(
ν Tr2[κ] + (1 − ν)Tr[κ2]

)
dS0, (6.4)

which consists of contributions from membrane, transverse shear and bending modes of
deformation. The corresponding strain measures ε, γ and κ have components εαβ = (ϕ,α · ϕ,β −
δαβ )/2, γα = ϕ,α · t and καβ = ϕ,α · t,β in the basis dual to the mid surface tangents {ϕ,1, ϕ,2},
where α, β ∈ {1, 2} and we have used the shorthand (·),α to denote the partial derivative ∂(·)/∂Xα .
Equation (6.4) presumes a linear constitutive relationship between these strains and their
conjugate stress resultants. In particular, Eh/(1 − ν2), Gh and B are the membrane, transverse shear
and bending moduli, respectively. Finally, the boundary conditions satisfied by the deformation
to replicate the construction of a Möbius strip are given by

(ϕ, t)
∣∣
X1=0 = (X2E2, E3) and (ϕ, t)

∣∣
X1=�

= −(X2E2, E3). (6.5)

Evidently, the Cosserat plate theory relaxes the assumptions of centreline inextensibility and
unshearability of cross sections assumed in the Kirchhoff rod and developable strip models. In
light of the bending dominated nature of the deformations highlighted by the insensitivity of
band shapes to strip thicknesses in figure 8b, we do not expect this generality of the theory to
be significant for modelling thin Möbius strips. This expectation is confirmed by the numerical
simulations shown subsequently. Nevertheless, permitting transverse shear simplifies the choice
of coordinates (i.e. degrees of freedom) in the finite-element method by avoiding the need
for continuously differentiable basis functions. The large contrast between bending and shear
stiffnesses effectively penalizes transverse shear. Notice also that unlike in the one-dimensional
models, we do not presume flip-symmetry in equation (6.5). Nevertheless, all our simulations of
Möbius strips using the Cosserat plate theory reveal this symmetry.

(b) Models versus measurements
We now proceed to compare model predictions with experimental measurements. Unless
mentioned otherwise, we consider the strip used in §§3 and 4 having dimensions � = 30 cm, w =
1.9 cm and t = 0.18 mm in all the subsequent discussions. In keeping with the conventional
choice of examining strips having length 2π [16,18,19], we scale the experimental measurements
uniformly by the factor 2π/30 and accordingly set � = 2π , w = 0.4 and t = 0.00377 in our
simulations to retain the aspect ratios �/w ≈ 15.7 and w/t ≈ 105.6.

(i) Centreline shapes

Figure 10 shows projections of predicted and measured centreline shapes on orthogonal Cartesian
planes. We are grateful to Starostin & van der Heijden [18] for sharing simulation results for
the developable strip model, which we have used as-is. To compute the Cosserat plate model’s
predictions, we use the nonlinear finite-element method discussed in [36] and adopt cubic
triangular elements to circumvent issues of numerical locking. The top row of plots in the figure
reveals that the two models agree well with each other and with the marker-based experimental
measurements.

The second row of plots contrasts the same measurements with the prediction of the Kirchhoff
rod model. To examine whether the inextensibility and unshearability constraints presumed in
the model contribute to the large deviations observed, the plots additionally show predictions of
a generalized Cosserat rod model from [37] and a simulation performed using the commercial
software Abaqus (element-type B33). The former permits centreline extension and transverse
shear, while the latter permits centreline extension but not shear. We find that the shapes predicted
by all three models coincide. Moreover, extensional and shear strains remain negligibly small in
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Figure 11. An examination of deformation features in aMöbius strip. Image (a) compares predicted andmeasured strip shapes,
complementing the observations on centreline shapes in figure 10. (b) Contours of the strain energy densityΠ cp/B over the
reference and deformed configurations predicted by the Cosserat plate model. The plot in (c) examines the curvature of the
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these simulations even when permitted, thus reaffirming the deformation’s bending-dominated
nature.

The curve in green shown in the bottom row of plots is an extremizer of the Sadowsky
functional [14,15] Π sy = (Bw/2)

∫�
0(κ2 + τ 2)2/κ2 dX1, where κ and τ denote the curvature and

torsion of the centreline. The model can be formally derived from equation (6.3) as the width w is
made vanishingly small. The Sadowsky model’s prediction is notably superior to the rod models.
Nevertheless, its qualitative deficiencies become apparent when we examine the prediction of κ

in figure 11c.

(ii) Deformation features

Figure 11a complements the centreline comparisons in figure 10 by examining the predicted and
measured shapes of mid surfaces. The developable strip model defines the mid surface as the
rectifying developable of the predicted centreline, while the Cosserat plate theory computes the
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mid surface explicitly. Figure 11a superimposes these with the marker-based and the structured
light imaging measurements. We find that all four datasets agree well with each other.

A prominent feature the shape of a Möbius strip is the manifestation of nearly flat triangular
regions bounded by creases [38]. Such phenomena are of interest in studying energy localization
and are understood to result from coupling between bending and twisting deformation modes
[11]. To examine this feature, figure 11b shows contours of the strain energy density predicted by
the Cosserat plate model over the reference and deformed mid surfaces. The triangular facet is
highlighted over the latter. The energy density is negligibly small over the demarcated region,
confirming that the facet is in fact nearly flat. The creases bounding the facet appear to meet at a
vertex, where the strain energy is localized. Such vertices are points where generators accumulate
in the developable strip model [18]. However, the Cosserat plate theory does not invoke any
notion of developability and hence makes no references to surface generators. Instead, the
bending dominated nature of the deformation ensures negligible metric distortions. To highlight
this feature of the Cosserat model’s prediction, we compute the eigen decomposition of the
second fundamental form of the deformation mapping predicted by it for the mid surface. We
find that the Gaussian curvature indeed remains negligibly small. Furthermore, the eigenvectors
corresponding to the (approximately) zero eigenvalue plotted over the reference configuration in
figure 11b closely resemble the distribution of generators observed in the developable strip model
see (see [18, fig. 2]).

Figure 11c examines the curvatures (κ) of the centreline shapes in figure 8. We note that κ is
one of the primary unknowns in the developable strip model, but is not of particular significance
in the Cosserat plate model and is computed as a post-processing step. We resort to a spline fit
(R2 > 0.99) to determine the curvature distribution from the experimental measurements. The
figure reveals that centreline curvatures computed from both models and the measurements
agree well. Notice that the curvature vanishes at s = π in all three datasets. Indeed, the Frenet
frame switches orientation at this point. Nevertheless, the mid surface parametrization remains
continuous thanks to the vanishing curvature. This is not the case with the Sadowsky model
shown in green, for which κ(π ) �= 0. The figure also helps examine the number of frame-switching
points, where both the curvature and torsion of the centreline vanish. It is shown in [20] that the
centreline of a developable Möbius strip necessarily has an odd number of such points. Although
we have omitted plots showing torsion of the centreline, we note that both the developable strip
and Cosserat plate models identify precisely one such point at s = π . By contrast, the Kirchhoff
rod model violates this condition [18].

(iii) Influence of the width

The measurements depicted in figure 7b reveal a noticeable influence of the width on a
Möbius strip’s shape. Both the developable strip and the Cosserat plate models reproduce this
dependence accurately. Figure 12a quantitatively conveys this agreement by reporting the mean
and standard deviations, μ, σ as defined in §5, of a dense set of points sampling the mid surfaces
predicted by the Cosserat plate and developable strip models, from the measurements shown in
figure 7b. By contrast, we find that the Kirchhoff rod model predicts identical centreline shapes
for all the four widths considered in figure 12a. This observation can be rationalized as follows.
At large values of the aspect ratio w/t, the contribution to the strain energy Π rod in equation (6.1)
from bending about the stiff axis t3 becomes negligibly small, i.e.

∫�
X1=0 EI3κ

2
3 dX1 ≈ 0. In this

regime, J is well approximated by wh3/3. Hence, both
∫�

X1=0 GJκ2
1 and

∫�
X1=0 EI2κ

2
2 depend linearly

on w, thus rendering Π rod/w independent of the width.

(iv) Energies

Figure 12b examines the strain energies of predicted solutions for strips having widths considered
in figure 12a. The energies are normalized by the bending modulus B of the plate theory.
Corroborating the close agreements observed in figures 10 and 11, we find that the energies
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width
w

in cm
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(mean, s.d.)

in µm
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in µm

1.90 60, 27 69, 28
4.78 53, 19 54, 22
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9.55 84, 67 104, 63
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Figure 12. Table (a) reports themeans and standarddeviations (μandσ as defined in§5) of thepredictions by thedevelopable
strip and Cosserat plate models from point cloud measurements of 30 cm long strips having different widths. The plot in
(b) shows normalized strain energies as a function of the normalized width for Möbius strips modelled as a nonlinear rod,
developable strip and as a Cosserat plate. (Online version in colour.)

predicted by the developable strip and Cosserat plate models agree well. Inspecting the simulated
solutions confirms this to be a consequence of the membrane and shear components of the energy
in the Cosserat plate theory being negligibly small. Indeed, examining the non-dimensionalized
ratios of membrane and shear moduli to the bending modulus

�w × Eh/(1 − ν2)
B

= 12
(

�

w

)(w
h

)2
and

�w × Gh
B

= 6(1 − ν)
(

�

w

)(w
h

)2
,

shows that the membrane and shear moduli effectively act as penalty parameters (weakly)
enforcing inextensibility and unshearability. In particular, for the strip used in figures 9 and 10,
these ratios are approximately 2.12 × 106 and 6.3 × 105. Hence, both the developable strip and
Cosserat plate theories effectively coincide when modelling the bending dominated deformations
involved in the construction of Möbius strips. The super-linear dependence of the predicted
energies on the width is clear from the plot. This feature is in contrast to the linear dependence
predicted by the rod model, which, as discussed previously, we expect from the width-
independence of the predicted solutions. We also note that despite its poor predictions for the
shapes of strips seen in figure 10, figure 12b shows, perhaps surprisingly, that the rod model
predicts lower energies than the Cosserat plate and developable strip models. This observation
points at inadequacies of the rod model in accounting for energetic contributions from the
kinematics involved in constructing Möbius strips.

Remarks 1. We conclude this section with a few remarks.

(i) It is not surprising that the plate-based developable strip and Cosserat models
outperform the Kirchhoff rod model in predicting shapes and features of Möbius
bands constructed from reasonably wide strips. These observations echo similar findings
reported from recent studies on ribbon structures in [12,17], for instance. Significantly
perhaps, the comparisons between experiments and model predictions conclusively add
the canonical case of a Möbius strip to the list of examples that help distinguish rod- and
plate-based models.

(ii) Simulations of the Cosserat plate theory, although new in the context of modelling
Möbius strips, essentially confirm anticipated solution features [18,20]. Extensibility
and shearability in the model were inconsequential in the current study involving
bending dominated deformations. However, we expect them to be useful in more general
investigations of ribbon structures (cf. [39]).
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(iii) Applications of the developable strip theory in ribbon mechanics are motivated by the
premise of its performance in predicting shapes of Möbius strips. Its comparison with
experimental measurements provides unambiguous validation in this context.

(iv) The observations on the performance of the rod model identify quantitative shortcomings
in modelling Möbius strips as rods with slender cross sections [16]. Nevertheless, we
also note that the rod theory continues to be successfully used in modelling a variety of
problems involving ribbon-like structures [21,40].

7. Concluding remarks
The two stereo vision-based techniques proposed in this article enabled us to undertake a detailed
examination of a model system in ribbon mechanics. They represent a non-trivial departure
from ubiquitous digital image correlation methods [26], which are ill-suited for measuring
deformations involving large displacements and rotations. Both are readily accessible low-cost
techniques that promise to be useful in the general context of visualizing and measuring complex
deformations of slender elastic structures. The marker-based technique also seems appropriate
for measuring dynamic deformations or ribbons.

An immediate consequence of the shape and deformation measurements of Möbius strip made
possible by these techniques is a resounding endorsement of the geometric ideas underlying the
developable strip model. Equally significantly, the measurements help chronicle deficiencies in
modelling ribbons as rods with slender cross-sections. The Cosserat plate theory’s efficacy for
modelling Möbius strips shown here complements the study in [12]. The purpose of examining
the theory here is not to advocate modelling Möbius strips or ribbons as plate structures. Rather,
its validation shown here inspires confidence in adopting readily available simulation codes that
implement algorithms approximating its predictions to study problems in ribbon mechanics.
This is especially significant in light of the challenges that persist in using the developable strip
model [22]. Specifically, owing to the choice of coordinates for deformed surfaces, it is necessary
to account for singularities in solutions at locations where the centreline curvature vanishes.
Simulations of the developable strip model from [18] reproduced here exploit a priori knowledge
of these singular points. It remains to be seen whether the model can be used in problems where
the existence or locations of such singularities are not known beforehand, or may even change
during loading. The Cosserat plate theory circumvents these issues entirely.

Finally, we hope that the experimental data made available with this article will help accelerate
the development of dedicated ribbon models. For, irrespective of the possibilities, one thing is
clear—the problem of predicting the shape of a Möbius strip will remain a litmus test that any
such model will need to pass.
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Authors’ contributions. A.K.: Mechanical modelling, finite-element simulation, numerical simulations; P.H.:
Sample preparation, experimental measurements, validations; D.B.: Fabrication, experimental measurements;
R.R.: Conceptualization, mechanical modelling, finite-element software development, measurement
techniques, manuscript preparation and funding. All authors gave final approval for publication and agree to
be held accountable for the work performed therein.
Competing interests. We declare we have no competing interests.
Funding. Science and Engineering Research Board (SERB, India) Early Career Research Award ECR/2017/000346
and Core Research Grant CRG/2020/003641.

References
1. Pickover C. 2007 The Möbius strip: Dr. August Möbius’s marvelous band in mathematics, games,

literature, art, technology, and cosmology. New York, NY: Basic Books.
2. Prevos P. 2018 The Möbius strip in magic: a treatise on the Afghan bands. Kangaroo Flat, Australia:

Third Hemisphere Publishing.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

1 

https://doi.org/10.6084/m9.figshare.14479398


21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210076

...........................................................

3. Seiner J, Backley F, Gilinsky M. 1998 Screws, propellers and fans based on a Möbius strip. In
4th AIAA/CEAS Aeroacoustics Conf., Toulouse, France, 2–4 June 1998. (doi:10.2514/6.1998-2260)

4. Caetano E, Freire V, Dos Santos S, Galvao D, Sato F. 2008 Möbius and twisted graphene
nanoribbons: stability, geometry, and electronic properties. J. Chem. Phys. 128, 164719.
(doi:10.1063/1.2908739)

5. Han D, Pal S, Liu Y, Yan H. 2010 Folding and cutting DNA into reconfigurable topological
nanostructures. Nat. Nanotechnol. 5, 712–717. (doi:10.1038/nnano.2010.193)

6. Tanda S, Tsuneta T, Okajima Y, Inagaki K, Yamaya K, Hatakenaka N. 2002 A Möbius strip of
single crystals. Nature 417, 397–398. (doi:10.1038/417397a)

7. Wakabayashi K, Harigaya K. 2003 Magnetic structure of nano-graphite Möbius ribbon. J. Phys.
Soc. Jpn. 72, 998–1001. (doi:10.1143/JPSJ.72.998)

8. Ben Amar M, Pomeau Y. 1997 Crumpled paper. Proc. R. Soc. Lond. A 453, 729–755.
(doi:10.1098/rspa.1997.0041)

9. Gupta S, Saxena A. 2014 A topological twist on materials science. MRS Bull. 39, 265–279.
(doi:10.1557/mrs.2014.28)

10. Fosdick R, Fried E. 2016 The mechanics of ribbons and Möbius bands. Berlin, Germany: Springer.
11. Korte A, Starostin E, van der Heijden G. 2011 Triangular buckling patterns of twisted

inextensible strips. Proc. R. Soc. A 467, 285–303. (doi:10.1098/rspa.2010.0200)
12. Kumar A, Handral P, Bhandari D, Karmakar A, Rangarajan R. 2020 An investigation of

models for elastic ribbons: simulations & experiments. J. Mech. Phys. Solids 143, 104070.
(doi:10.1016/j.jmps.2020.104070)

13. Bradski G. 2000 The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
14. Sadowsky M. 1929 Die Differentialgleichungen des Möbiusschen Bandes. Jahresber. Dtsch.

Math.-Ver. 39, 2.
15. Hinz D, Fried E. 2015 Translation of Michael Sadowsky’s paper ‘The differential equations of

the Möbius band’. J. Elast. 1, 19–22. (doi:10.1007/s10659-014-9491-4)
16. Mahadevan L, Keller J. 1993 The shape of a Möbius band. Proc. R. Soc. Lond. A 440, 149–162.

(doi:10.1098/rspa.1993.0009)
17. Huang W, Wang Y, Li X, Jawed M. 2020 Shear induced supercritical pitchfork bifurcation

of pre-buckled bands, from narrow strips to wide plates. J. Mech. Phys. Solids 145, 104168.
(doi:10.1016/j.jmps.2020.104168)

18. Starostin E, van der Heijden G. 2007 The shape of a Möbius strip. Nat. Mater. 6, 563–567.
(doi:10.1038/nmat1929)

19. Moore A, Healey T. 2019 Computation of elastic equilibria of complete Möbius bands and
their stability. Math. Mech. Solids 24, 939–967. (doi:10.1177/1081286518761789)

20. Randrup T, Røgen P. 1996 Sides of the Möbius strip. Arch. Math. 66, 511–521.
(doi:10.1007/BF01268871)

21. Yu T, Hanna J. 2019 Bifurcations of buckled, clamped anisotropic rods and thin bands under
lateral end translations. J. Mech. Phys. Solids 122, 657–685. (doi:10.1016/j.jmps.2018.01.015)

22. Charrondière R, Bertails-Descoubes F, Neukirch S, Romero V. 2020 Numerical modeling of
inextensible elastic ribbons with curvature-based elements. Comput. Methods Appl. Mech. Eng.
364, 112922. (doi:10.1016/j.cma.2020.112922)

23. Wunderlich W. 1962 Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289.
(doi:10.1007/BF01299052)

24. Hartley R, Zisserman A. 2003 Multiple view geometry in computer vision. Cambridge, UK:
Cambridge University Press.

25. Ma Y, Soatto S, Kosecka J, Sastry S. 2012 An invitation to 3-D vision: from images to geometric
models, vol. 26. Berlin, Germany: Springer Science & Business Media.

26. Sutton M, Orteu J, Schreier H. 2009 Image correlation for shape, motion and deformation
measurements: basic concepts, theory and applications. New York, NY: Springer.

27. Fiala M. 2009 Designing highly reliable fiducial markers. IEEE Trans. Pattern Anal. Mach. Intell.
32, 1317–1324. (doi:10.1109/TPAMI.2009.146)

28. Olson E. 2011 AprilTag: a robust and flexible visual fiducial system. In IEEE Int. Conf.
on Robotics and Automation, Shanghai, China, 9–13 May 2011, pp. 3400–3407. (doi:10.1109/
ICRA.2011.5979561)

29. Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas F, Marín-Jiménez M. 2014 Automatic
generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit.
47, 2280–2292. (doi:10.1016/j.patcog.2014.01.005)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

1 

https://doi.org/doi:10.2514/6.1998-2260
https://doi.org/doi:10.1063/1.2908739
https://doi.org/doi:10.1038/nnano.2010.193
https://doi.org/doi:10.1038/417397a
https://doi.org/doi:10.1143/JPSJ.72.998
https://doi.org/doi:10.1098/rspa.1997.0041
https://doi.org/doi:10.1557/mrs.2014.28
https://doi.org/doi:10.1098/rspa.2010.0200
https://doi.org/doi:10.1016/j.jmps.2020.104070
https://doi.org/doi:10.1007/s10659-014-9491-4
https://doi.org/doi:10.1098/rspa.1993.0009
https://doi.org/doi:10.1016/j.jmps.2020.104168
https://doi.org/doi:10.1038/nmat1929
https://doi.org/doi:10.1177/1081286518761789
https://doi.org/doi:10.1007/BF01268871
https://doi.org/doi:10.1016/j.jmps.2018.01.015
https://doi.org/doi:10.1016/j.cma.2020.112922
https://doi.org/doi:10.1007/BF01299052
https://doi.org/doi:10.1109/TPAMI.2009.146
https://doi.org/doi:10.1109/ICRA.2011.5979561
https://doi.org/doi:10.1109/ICRA.2011.5979561
https://doi.org/doi:10.1016/j.patcog.2014.01.005


22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210076

...........................................................

30. Geng J. 2011 Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics 3, 128–160.
(doi:10.1364/AOP.3.000128)

31. Schwarz G. 1990 The dark side of the Moebius strip. Am. Math. Mon. 97, 890–897.
(doi:10.1080/00029890.1990.11995680)

32. O’Reilly O. 2017 Modeling nonlinear problems in the mechanics of strings and rods: the role
of the balance laws. Interaction of Mechanics and Mathematics. Berlin, Germany: Springer
International Publishing.

33. Love A. 2013 A treatise on the mathematical theory of elasticity. Cambridge, UK: Cambridge
University Press.

34. Dias M, Audoly B. 2015 ‘Wunderlich, Meet Kirchhoff’: a general and unified description of
elastic ribbons and thin rods. J. Elast. 1, 49–66. (doi:10.1007/s10659-014-9487-0)

35. Todres R. 2015 Translation of W. Wunderlich’s ‘On a developable Möbius band’. J. Elast. 119,
23–34. (doi:10.1007/s10659-014-9489-y)

36. Simo J, Fox D, Rifai M. 1990 On a stress resultant geometrically exact shell model. Part III:
computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79, 21–70.
(doi:10.1016/0045-7825(90)90094-3)

37. Simo J. 1985 A finite strain beam formulation. The three-dimensional dynamic problem. I.
Comput. Methods Appl. Mech. Eng. 49, 55–70. (doi:10.1016/0045-7825(85)90050-7)

38. Starostin E, van der Heijden G. 2015 Equilibrium shapes with stress localisation
for inextensible elastic Möbius and other strips. J. Elast. 119, 67–112.
(doi:10.1007/s10659-014-9495-0)

39. Kleiman D, Hinz D, Takato Y, Fried E. 2016 Influence of material stretchability on the
equilibrium shape of a Möbius band. Soft Matter 12, 3750–3759. (doi:10.1039/C5SM02188J)

40. Riccobelli D, Noselli G, DeSimone A. 2021 Rods coiling about a rigid constraint: helices and
perversions. Proc. R. Soc. A 477, 20200817. (doi:10.1098/rspa.2020.0817)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

ug
us

t 2
02

1 

https://doi.org/doi:10.1364/AOP.3.000128
https://doi.org/doi:10.1080/00029890.1990.11995680
https://doi.org/doi:10.1007/s10659-014-9487-0
https://doi.org/doi:10.1007/s10659-014-9489-y
https://doi.org/doi:10.1016/0045-7825(90)90094-3
https://doi.org/doi:10.1016/0045-7825(85)90050-7
https://doi.org/doi:10.1007/s10659-014-9495-0
https://doi.org/doi:10.1039/C5SM02188J
https://doi.org/doi:10.1098/rspa.2020.0817

	Introduction
	Stereo vision in a nutshell
	Image formation
	Triangulation

	Sampling deformation mappings with fiduciary markers
	ArUco markers
	Incremental reconstruction

	Sampling three-dimensional shapes using structured light imaging
	Structured light illumination
	Encoded correspondences

	Some observations
	Model predictions versus measurements
	Mechanical models
	Models versus measurements

	Concluding remarks
	References

